Skip to main content

Robust Registration of Statistical Shape Models for Unsupervised Pathology Annotation

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11851)

Abstract

We present a method to automatically label pathologies in volumetric medical data. Our solution makes use of a healthy statistical shape model to label pathologies in novel targets during model fitting. We achieve this using an EM algorithm: the E-step classifies surface points into pathological or healthy classes based on outliers in predicted correspondences, while the M-step performs probabilistic fitting of the statistical shape model to the healthy region. Our method is independent of pathology type or target anatomy, and can therefore be used for labeling different types of data. The method is able to detect pathologies with higher accuracy than standard robust detection algorithms, which we show using true positive rate and F1 scores. Furthermore, the method provides an estimate of the uncertainty of the synthesized label. The detection also directly improves surface reconstruction results, as shown by a decrease in the average and Hausdorff distances to ground truth. The method can be used for automated diagnosis or as a pre-processing step to accurately label large amounts of images.

Keywords

  • Statistical shape model
  • Label synthesis
  • Outlier detection
  • Robust non-rigid registration
  • EM algorithm

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-33642-4_2
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-33642-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    https://scalismo.org.

References

  1. Chetverikov, D., Stepanov, D., Krsek, P.: Robust euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

    CrossRef  Google Scholar 

  2. Chitphakdithai, N., Duncan, J.S.: Non-rigid registration with missing correspondences in preoperative and postresection brain images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 367–374. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_45

    CrossRef  Google Scholar 

  3. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)

    CrossRef  Google Scholar 

  4. Dufour, P.A., Abdillahi, H., Ceklic, L., Wolf-Schnurrbusch, U., Kowal, J.: Pathology hinting as the combination of automatic segmentation with a statistical shape model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 599–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_74

    CrossRef  Google Scholar 

  5. Egger, B., et al.: Occlusion-aware 3D morphable models and an illumination prior for face image analysis. Int. J. Comput. Vis. 126, 1269–1287 (2018)

    CrossRef  Google Scholar 

  6. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Symposium on Geometry Processing, vol. 2, p. 5 (2005)

    Google Scholar 

  7. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)

    CrossRef  Google Scholar 

  8. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    CrossRef  Google Scholar 

  9. Lüthi, M., Albrecht, T., Vetter, T.: Building shape models from lousy data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 1–8. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_1

    CrossRef  Google Scholar 

  10. Lüthi, M., Forster, A., Gerig, T., Vetter, T.: Shape modeling using Gaussian process morphable models. In: Statistical Shape and Deformation Analysis, pp. 165–191. Elsevier (2017)

    Google Scholar 

  11. Lüthi, M., Gerig, T., Jud, C., Vetter, T.: Gaussian process morphable models. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1860–1873 (2018)

    CrossRef  Google Scholar 

  12. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities (2016)

    CrossRef  Google Scholar 

  13. Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: a review. Int. J. Comput. Vis. 6(1), 59–70 (1991)

    CrossRef  Google Scholar 

  14. Morel-Forster, A., Gerig, T., Lüthi, M., Vetter, T.: Probabilistic fitting of active shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 137–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_13

    CrossRef  Google Scholar 

  15. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    CrossRef  Google Scholar 

  16. Pajdla, T., Van Gool, L.: Matching of 3-D curves using semi-differential invariants. In: Proceedings of IEEE International Conference on Computer Vision, pp. 390–395. IEEE (1995)

    Google Scholar 

  17. Reyneke, C., Thusini, X., Douglas, T., Vetter, T., Mutsvangwa, T.: Construction and validation of image-based statistical shape and intensity models of bone. In: 2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC), pp. 1–4. IEEE (2018)

    Google Scholar 

  18. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    CrossRef  Google Scholar 

  19. Thompson, P.M., Woods, R.P., Mega, M.S., Toga, A.W.: Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum. Brain Mapp. 9(2), 81–92 (2000)

    CrossRef  Google Scholar 

  20. Toews, M., Arbel, T.: A statistical parts-based model of anatomical variability. IEEE Trans. Med. Imaging 26(4), 497–508 (2007)

    CrossRef  Google Scholar 

  21. Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 190–197. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_24

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Rahbani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rahbani, D., Morel-Forster, A., Madsen, D., Lüthi, M., Vetter, T. (2019). Robust Registration of Statistical Shape Models for Unsupervised Pathology Annotation. In: , et al. Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention. LABELS HAL-MICCAI CuRIOUS 2019 2019 2019. Lecture Notes in Computer Science(), vol 11851. Springer, Cham. https://doi.org/10.1007/978-3-030-33642-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33642-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33641-7

  • Online ISBN: 978-3-030-33642-4

  • eBook Packages: Computer ScienceComputer Science (R0)