Skip to main content

The Pathogenesis of Autoimmune Liver Diseases

  • Chapter
  • First Online:
Diagnosis and Management of Autoimmune Hepatitis

Abstract

Autoimmune liver diseases (AILD) are chronic inflammatory and immune-mediated disorders of the liver and biliary tree, the pathogenesis of which involves the attack of the host’s innate and adaptive immune systems against cellular elements of the liver and/or the intra- and/or extra-hepatic biliary tree. The four major forms of AILDs include classic autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and overlap syndromes (OS). In AIH, the principal attack of the immune system is directed at hepatocytes; in PBC, the principal attack is directed at cholangiocytes that line the smaller intrahepatic bile ducts; in PSC, the principal attack is directed at cholangiocytes and perhaps other cells that comprise the larger intra- and/or extrahepatic bile ducts; in OS, there are elements of immune-mediated injury directed at both hepatocytes and cholangiocytes. The pathogenesis of AILD involves the exposure of hosts to infectious agents, such as viruses and bacteria, or to xenobiotics, chemicals that may come from natural sources or that may have been synthesized by humans. In genetically susceptible hosts, these inciting agents lead to the production of neoantigens and/or to substances that exhibit molecular mimicry to endogenous components of hepatocytes and/or cholangiocytes. The neoantigens or mimics elicit innate immune responses, followed by adaptive immune responses, with the formation of autoantibodies, made chiefly by B cells and plasma cells, and by T lymphocytes, including natural killer (NK) T cells, T8 (cytotoxic) and T4 (helper) cells. The latter cells attack and injure and kill hepatocytes and/or cholangiocytes and set in motion proinflammatory and profibrogenic cascades that may eventuate in hepatic necrosis, collapse, fibrosis, cirrhosis, and liver failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

autoimmune cholangitis

ADCC:

antibody-dependent cytotoxicity

AE:

anion exchanger

AILD:

autoimmune liver diseases

AIH:

autoimmune hepatitis

AMA:

antimitochondrial antibodies

ANA:

antinuclear antibodies

(A)SMA:

(anti-)smooth muscle antibodies

APC:

antigen-presenting cells

ASGPR:

asialoglycoprotein receptor

BEC:

biliary epithelial cells (cholangiocytes)

CD:

cluster of differentiation

(G)CDC:

(glyco)chenodeoxycholic acid

CIRP:

cold-inducible RNA-binding protein

CMV:

cytomegalovirus

CTL:

cytotoxic T lymphocytes

CYP:

cytochrome P-450

CTL:

cytotoxic T lymphocytes

CTLA-4:

CTL antigen A-4

DAMPs:

danger-associated molecular patterns

EBV:

Epstein-Barr virus

GWAS:

genome-wide association study

HAV:

hepatitis A virus

HBV:

hepatitis B virus

HCV:

hepatitis C virus

HDV:

hepatitis D virus

HEV:

hepatitis E virus

HIV:

human immunodeficiency virus

HLA:

human leukocyte antigen

HMGB:

high-mobility group box

HSP:

heat-shock protein

HSV:

herpes simplex virus

IBD:

inflammatory bowel disease

Ig:

immunoglobulins

L:

ligand

LKM:

liver-kidney microsome

LSEC:

liver sinusoidal endothelial cells

LPS:

lipopolysaccharide

LT:

liver transplantation

NLR:

nucleotide binding and leucine-rich repeat

NLRP:

NLR pyrin domain containing

NK (T):

natural killer (T) cells

NO:

nitric oxide

OADC:

organic acid dehydrogenase complexes

OS:

overlap syndromes

PAMPs:

pathogen-associated molecular patterns

pANCA:

perinuclear antineutrophil cytoplasmic antibodies (now called pANNA)

pANNA:

perinuclear antineutrophil nuclear antibodies

PBC:

primary biliary cholangitis

PD:

programmed death

PDC:

pyruvate dehydrogenase complex

PSC:

primary sclerosing cholangitis

SLA:

soluble liver antigen

SLE:

systemic lupus erythematosus

STAT:

signal transducer and activator of translation

TGF:

transforming growth factor

TGR5:

Takeda G protein complex R-5

Th:

T helper cells

TIPS:

transvenous intrahepatic portosystemic shunt

TLR:

Toll-like receptors

TNF:

tumor necrosis factor

TRAIL:

TNF-related apoptosis-inducing ligand

Treg:

regulatory T cells

UC:

ulcerative colitis

UDCA:

ursodeoxycholic acid

UDP:

uridine diphosphate

UGT:

UDP-glucuronosyltransferase(s)

WAF:

water-accommodating fraction

References

  1. Engel B, Diestelhorst J, Janik MK, et al. European multicenter validation of autoantibodies against huntingtin-interacting protein 1-related protein for the diagnosis of autoimmune hepatitis in adults. J Hepatol. 2019;70:e162.

    Article  Google Scholar 

  2. Loeper J, Descatoire V, Maurice M, et al. Cytochromes P-450 in human hepatocyte plasma membrane: recognition by several autoantibodies. Gastroenterology. 1993;104:203–16.

    Article  CAS  PubMed  Google Scholar 

  3. Boyer TD, Sanyal AJ, Terrault NA, et al. Zakim and Boyer’s hepatology: a textbook of liver disease. Philadelphia, PA: Elsevier Health Sciences; 2016.

    Google Scholar 

  4. de Boer YS, Kosinski AS, Urban TJ, et al. Features of autoimmune hepatitis in patients with drug-induced liver injury. Clin Gastroenterol Hepatol. 2017;15:103–112.e2.

    Article  PubMed  Google Scholar 

  5. Alla V, Abraham J, Siddiqui J, et al. Autoimmune hepatitis triggered by statins. J Clin Gastroenterol. 2006;40:757–61.

    Article  CAS  PubMed  Google Scholar 

  6. Russo MW, Scobey M, Bonkovsky HL. Drug-induced liver injury associated with statins. Semin Liver Dis. 2009;29:412–22.

    Article  CAS  PubMed  Google Scholar 

  7. deLemos AS, Foureau DM, Jacobs C, et al. Drug-induced liver injury with autoimmune features. Semin Liver Dis. 2014;34:194–204.

    Article  CAS  PubMed  Google Scholar 

  8. Russo MW, Hoofnagle JH, Gu J, et al. Spectrum of statin hepatotoxicity: experience of the drug-induced liver injury network. Hepatology. 2014;60:679–86.

    Article  CAS  PubMed  Google Scholar 

  9. French JB, Bonacini M, Ghabril M, et al. Hepatotoxicity associated with the use of anti-TNF-alpha agents. Drug Saf. 2016;39:199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koralnik IJ. Can immune checkpoint inhibitors keep JC virus in check? N Engl J Med. 2019;380:1667–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kong YCM, Flynn JC. Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1. Front Immunol. 2014;5:206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lanzolla G, Coppelli A, Cosottini M, et al. Immune checkpoint blockade anti-PD-L1 as a trigger for autoimmune polyendocrine syndrome. J Endocr Soc. 2019;3:496–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vento S, McFarlane BM, McSorley CG, et al. Liver autoreactivity in acute virus A, B and non-A, non-B hepatitis. J Clin Lab Immunol. 1988;25:1–7.

    CAS  PubMed  Google Scholar 

  14. Vento S, Garofano T, Di Perri G, et al. Identification of hepatitis A virus as a trigger for autoimmune chronic hepatitis type 1 in susceptible individuals. Lancet. 1991;337:1183–7.

    Article  CAS  PubMed  Google Scholar 

  15. Clifford BD, Donahue D, Smith L, et al. High prevalence of serological markers of autoimmunity in patients with chronic hepatitis C. Hepatology. 1995;21:613–9.

    CAS  PubMed  Google Scholar 

  16. Durazzo M, Philipp T, Van Pelt FN, et al. Heterogeneity of liver-kidney microsomal autoantibodies in chronic hepatitis C and D virus infection. Gastroenterology. 1995;108:455–62.

    Article  CAS  PubMed  Google Scholar 

  17. Christen U, Hintermann E. Pathogen infection as a possible cause for autoimmune hepatitis. Int Rev Immunol. 2014;33:296–313.

    Article  CAS  PubMed  Google Scholar 

  18. Vento S, Cainelli F, Ferraro T, et al. Autoimmune hepatitis type 1 after measles. Am J Gastroenterol. 1996;91:2618–20.

    CAS  PubMed  Google Scholar 

  19. Vento S, Cainelli F. Is there a role for viruses in triggering autoimmune hepatitis? Autoimmun Rev. 2004;3:61–9.

    Article  PubMed  Google Scholar 

  20. Tunccan OG, Tufan A, Telli G, et al. Visceral leishmaniasis mimicking autoimmune hepatitis, primary biliary cirrhosis, and systemic lupus erythematosus overlap. Korean J Parasitol. 2012;50:133–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sahebjam F, Vierling JM. Autoimmune hepatitis. Front Med. 2015;9:187–219.

    Article  PubMed  Google Scholar 

  22. Jones H, Alpini G, Francis H. Bile acid signaling and biliary functions. Acta Pharm Sin B. 2015;5:123–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Medina JF. Role of the anion exchanger 2 in the pathogenesis and treatment of primary biliary cirrhosis. Dig Dis. 2011;29:103–12.

    Article  PubMed  CAS  Google Scholar 

  24. Melero S, Spirli C, Zsembery A, et al. Defective regulation of cholangiocyte Cl-/HCO3(−) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology. 2002;35:1513–21.

    Article  CAS  PubMed  Google Scholar 

  25. Alper SL. Molecular physiology and genetics of Na+−independent SLC4 anion exchangers. J Exp Biol. 2009;212:1672–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hohenester S, de Buy Wenniger LM, Jefferson DM, et al. Biliary bicarbonate secretion constitutes a protective mechanism against bile acid-induced injury in man. Dig Dis. 2011;29:62–5.

    Article  PubMed  CAS  Google Scholar 

  27. Hohenester S, Wenniger LM, Paulusma CC, et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology. 2012;55:173–83.

    Article  CAS  PubMed  Google Scholar 

  28. Hisamoto S, Shimoda S, Harada K, et al. Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis. J Autoimmun. 2016;75:150–60.

    Article  CAS  PubMed  Google Scholar 

  29. Chang JC, Go S, Verhoeven AJ, et al. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis. Biochim Biophys Acta Mol basis Dis. 1864;2018:1232–9.

    Google Scholar 

  30. Chang JC, Go S, de Waart DR, et al. Soluble adenylyl cyclase regulates bile salt-induced apoptosis in human cholangiocytes. Hepatology. 2016;64:522–34.

    Article  CAS  PubMed  Google Scholar 

  31. Odin JA, Huebert RC, Casciola-Rosen L, et al. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Invest. 2001;108:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mao TK, Davis PA, Odin JA, et al. Sidechain biology and the immunogenicity of PDC-E2, the major autoantigen of primary biliary cirrhosis. Hepatology. 2004;40:1241–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rong GH, Yang GX, Ando Y, et al. Human intrahepatic biliary epithelial cells engulf blebs from their apoptotic peers. Clin Exp Immunol. 2013;172:95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Popov Y, Sverdlov DY, Bhaskar KR, et al. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am J Physiol Gastrointest Liver Physiol. 2010;298:G323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sasaki M, Ikeda H, Yamaguchi J, et al. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology. 2008;48:186–95.

    Article  PubMed  Google Scholar 

  36. Sasaki M, Kuo FY, Huang CC, et al. Increased expression of senescence-associated cell cycle regulators in the progression of biliary atresia: an immunohistochemical study. Histopathology. 2018;72:1164–71.

    Article  PubMed  Google Scholar 

  37. Sasaki M, Yoshimura-Miyakoshi M, Sato Y, et al. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J Gastroenterol. 2015;50:984–95.

    Article  PubMed  Google Scholar 

  38. Sasaki M, Miyakoshi M, Sato Y, et al. Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol. 2010;53:318–25.

    Article  PubMed  Google Scholar 

  39. Sasaki M, Miyakoshi M, Sato Y, et al. Chemokine-chemokine receptor CCL2-CCR2 and CX3CL1-CX3CR1 axis may play a role in the aggravated inflammation in primary biliary cirrhosis. Dig Dis Sci. 2014;59:358–64.

    Article  CAS  PubMed  Google Scholar 

  40. Oldstone M. Molecular mimicry as a mechanism for the cause and as a probe uncovering etiologic agent (s) of autoimmune disease. In: Molecular mimicry. Berlin/Heidelberg: Springer; 1989. p. 127–35.

    Chapter  Google Scholar 

  41. Smyk DS, Bogdanos DP, Kriese S, et al. Urinary tract infection as a risk factor for autoimmune liver disease: from bench to bedside. Clin Res Hepatol Gastroenterol. 2012;36:110–21.

    Article  PubMed  Google Scholar 

  42. Parikh-Patel A, Gold EB, Worman H, et al. Risk factors for primary biliary cirrhosis in a cohort of patients from the united states. Hepatology. 2001;33:16–21.

    Article  CAS  PubMed  Google Scholar 

  43. Gershwin ME, Selmi C, Worman HJ, et al. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology. 2005;42:1194–202.

    Article  PubMed  Google Scholar 

  44. Corpechot C, Chretien Y, Chazouilleres O, et al. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol. 2010;53:162–9.

    Article  PubMed  Google Scholar 

  45. Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations. Gut. 2010;59:508–12.

    Article  CAS  PubMed  Google Scholar 

  46. Bogdanos DP, Baum H, Butler P, et al. Association between the primary biliary cirrhosis specific anti-sp100 antibodies and recurrent urinary tract infection. Dig Liver Dis. 2003;35:801–5.

    Article  CAS  PubMed  Google Scholar 

  47. Ciesek S, Liermann H, Hadem J, et al. Impaired TRAIL-dependent cytotoxicity of CD1c-positive dendritic cells in chronic hepatitis C virus infection. J Viral Hepat. 2008;15:200–11.

    Article  CAS  PubMed  Google Scholar 

  48. Bogdanos DP, Baum H, Okamoto M, et al. Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its Lactobacillus mimic. Hepatology. 2005;42:458–65.

    Article  CAS  PubMed  Google Scholar 

  49. Selmi C, Balkwill DL, Invernizzi P, et al. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology. 2003;38:1250–7.

    Article  CAS  PubMed  Google Scholar 

  50. Arsenijevic A, Milovanovic M, Milovanovic J, et al. Deletion of galectin-3 enhances xenobiotic induced murine primary biliary cholangitis by facilitating apoptosis of BECs and release of autoantigens. Sci Rep. 2016;6:23348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amano K, Leung PS, Rieger R, et al. Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol. 2005;174:5874–83.

    Article  CAS  PubMed  Google Scholar 

  52. Rieger R, Leung PS, Jeddeloh MR, et al. Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. J Autoimmun. 2006;27:7–16.

    Article  CAS  PubMed  Google Scholar 

  53. Smyk D, Rigopoulou EI, Bizzaro N, et al. Hair dyes as a risk for autoimmunity: from systemic lupus erythematosus to primary biliary cirrhosis. Auto Immun Highlights. 2013;4:1–9.

    Article  CAS  PubMed  Google Scholar 

  54. Alijotas-Reig J, Esteve-Valverde E, Gil-Aliberas N, et al. Autoimmune/inflammatory syndrome induced by adjuvants-ASIA-related to biomaterials: analysis of 45 cases and comprehensive review of the literature. Immunol Res. 2018;66:120–40.

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka T, Zhang W, Sun Y, et al. Autoreactive monoclonal antibodies from patients with primary biliary cholangitis recognize environmental xenobiotics. Hepatology. 2017;66:885–95.

    Article  CAS  PubMed  Google Scholar 

  56. Lammert C, Nguyen DL, Juran BD, et al. Questionnaire based assessment of risk factors for primary biliary cirrhosis. Dig Liver Dis. 2013;45:589–94.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liang Y, Yang Z, Zhong R. Smoking, family history and urinary tract infection are associated with primary biliary cirrhosis: a meta-analysis. Hepatol Res. 2011;41:572–8.

    Article  PubMed  Google Scholar 

  58. Smyk DS, Rigopoulou EI, Muratori L, et al. Smoking as a risk factor for autoimmune liver disease: what we can learn from primary biliary cirrhosis. Ann Hepatol. 2012;11:7–14.

    Article  CAS  PubMed  Google Scholar 

  59. Mantaka A, Koulentaki M, Samonakis D, et al. Association of smoking with liver fibrosis and mortality in primary biliary cholangitis. Eur J Gastroenterol Hepatol. 2018;30:1461–9.

    Article  PubMed  Google Scholar 

  60. Corpechot C, Gaouar F, Chretien Y, et al. Smoking as an independent risk factor of liver fibrosis in primary biliary cirrhosis. J Hepatol. 2012;56:218–24.

    Article  CAS  PubMed  Google Scholar 

  61. Chen W, Wei Y, Xiong A, et al. Comprehensive analysis of serum and fecal bile acid profiles and interaction with gut microbiota in primary biliary cholangitis. Clin Rev Allergy Immunol. 2019;1–14. https://doi.org/10.1007/s12016-019-08731-2. [Epub ahead of print] PMID: 30900136.

    Article  CAS  Google Scholar 

  62. O’Hara SP, Tabibian JH, Splinter PL, et al. The dynamic biliary epithelia: molecules, pathways, and disease. J Hepatol. 2013;58:575–82.

    Article  PubMed  Google Scholar 

  63. Pinto C, Giordano DM, Maroni L, et al. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol basis Dis. 1864;2018:1270–8.

    Google Scholar 

  64. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol. 2000;12:13–9.

    Article  CAS  PubMed  Google Scholar 

  65. Harada K, Ohira S, Isse K, et al. Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Lab Investig. 2003;83:1657–67.

    Article  CAS  PubMed  Google Scholar 

  66. Shimoda S, Harada K, Niiro H, et al. Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology. 2011;53:1270–81.

    Article  CAS  PubMed  Google Scholar 

  67. Shimoda S, Harada K, Niiro H, et al. CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology. 2010;51:567–75.

    Article  CAS  PubMed  Google Scholar 

  68. Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun. 2016;66:25–39.

    Article  CAS  PubMed  Google Scholar 

  69. Harada K, Isse K, Nakanuma Y. Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J Clin Pathol. 2006;59:184–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimoda S, Hisamoto S, Harada K, et al. Natural killer cells regulate T cell immune responses in primary biliary cirrhosis. Hepatology. 2015;62:1817–27.

    Article  CAS  PubMed  Google Scholar 

  71. Kita H, Lian ZX, Van de Water J, et al. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med. 2002;195:113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shimoda S, Miyakawa H, Nakamura M, et al. CD4 T-cell autoreactivity to the mitochondrial autoantigen PDC-E2 in AMA-negative primary biliary cirrhosis. J Autoimmun. 2008;31:110–5.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang J, Zhang W, Leung PS, et al. Ongoing activation of autoantigen-specific B cells in primary biliary cirrhosis. Hepatology. 2014;60:1708–16.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang H, Leung PSC, Gershwin ME, et al. How the biliary tree maintains immune tolerance? Biochim Biophys Acta Mol basis Dis. 1864;2018:1367–73.

    Google Scholar 

  75. Harada K, Ozaki S, Gershwin ME, et al. Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology. 1997;26:1399–405.

    Article  CAS  PubMed  Google Scholar 

  76. Harada K, Furubo S, Ozaki S, et al. Increased expression of WAF1 in intrahepatic bile ducts in primary biliary cirrhosis relates to apoptosis. J Hepatol. 2001;34:500–6.

    Article  CAS  PubMed  Google Scholar 

  77. Rong G, Zhou Y, Xiong Y, et al. Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol. 2009;156:217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liberal R, Grant CR, Longhi MS, et al. Regulatory T cells: mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life. 2015;67:88–97.

    Article  CAS  PubMed  Google Scholar 

  79. Webb GJ, Hirschfield GM. Follicles, germinal centers, and immune mechanisms in primary biliary cirrhosis. Hepatology. 2015;61:424–7.

    Article  PubMed  Google Scholar 

  80. Wang L, Sun Y, Zhang Z, et al. CXCR5+ CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis. Hepatology. 2015;61:627–38.

    Article  CAS  PubMed  Google Scholar 

  81. Zheng J, Wang T, Zhang L, et al. Dysregulation of circulating Tfr/Tfh ratio in primary biliary cholangitis. Scand J Immunol. 2017;86:452–61.

    Article  CAS  PubMed  Google Scholar 

  82. Wang L, Sun X, Qiu J, et al. Increased numbers of circulating ICOS(+) follicular helper T and CD38(+) plasma cells in patients with newly diagnosed primary biliary cirrhosis. Dig Dis Sci. 2015;60:405–13.

    Article  PubMed  CAS  Google Scholar 

  83. Takahashi T, Miura T, Nakamura J, et al. Plasma cells and the chronic nonsuppurative destructive cholangitis of primary biliary cirrhosis. Hepatology. 2012;55:846–55.

    Article  CAS  PubMed  Google Scholar 

  84. Washington K, Clavien PA, Killenberg P. Peribiliary vascular plexus in primary sclerosing cholangitis and primary biliary cirrhosis. Hum Pathol. 1997;28:791–5.

    Article  CAS  PubMed  Google Scholar 

  85. Yamagiwa S, Kamimura H, Takamura M, et al. Autoantibodies in primary biliary cirrhosis: recent progress in research on the pathogenetic and clinical significance. World J Gastroenterol. 2014;20:2606–12.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Norman GL, Reig A, Vinas O, et al. The prevalence of anti-hexokinase-1 and anti-kelch-like 12 peptide antibodies in patients with primary biliary cholangitis is similar in Europe and North America: a large international, multi-center study. Front Immunol. 2019;10:662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lleo A, Selmi C, Invernizzi P, et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology. 2009;49:871–9.

    Article  CAS  PubMed  Google Scholar 

  88. Rong G, Zhong R, Lleo A, et al. Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology. 2011;54:196–203.

    Article  CAS  PubMed  Google Scholar 

  89. Tanaka A, Leung PSC, Gershwin ME. The genetics and epigenetics of primary biliary cholangitis. Clin Liver Dis. 2018;22:443–55.

    Article  PubMed  Google Scholar 

  90. Qiu F, Tang R, Zuo X, et al. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis. Nat Commun. 2017;8:14828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cordell HJ, Han Y, Mells GF, et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Commun. 2015;6:8019.

    Article  CAS  PubMed  Google Scholar 

  92. Juran BD, Hirschfield GM, Invernizzi P, et al. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet. 2012;21:5209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu JZ, Almarri MA, Gaffney DJ, et al. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet. 2012;44:1137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu X, Invernizzi P, Lu Y, et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet. 2010;42:658–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hirschfield GM, Liu X, Han Y, et al. Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet. 2010;42:655–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hirschfield GM, Liu X, Xu C, et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med. 2009;360:2544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Im C, Sapkota Y, Moon W, et al. Genome-wide haplotype association analysis of primary biliary cholangitis risk in Japanese. Sci Rep. 2018;8:7806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kawashima M, Hitomi Y, Aiba Y, et al. Genome-wide association studies identify PRKCB as a novel genetic susceptibility locus for primary biliary cholangitis in the Japanese population. Hum Mol Genet. 2017;26:650–9.

    CAS  PubMed  Google Scholar 

  99. Nakamura M, Nishida N, Kawashima M, et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet. 2012;91:721–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mells GF, Floyd JA, Morley KI, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet. 2011;43:329–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paziewska A, Habior A, Rogowska A, et al. A novel approach to genome-wide association analysis identifies genetic associations with primary biliary cholangitis and primary sclerosing cholangitis in Polish patients. BMC Med Genet. 2017;10:2.

    Google Scholar 

  102. Wang C, Zheng X, Jiang P, et al. Genome wide association studies of specific antinuclear autoantibody sub-phenotypes in primary biliary cholangitis. Hepatology. 2019;70(1):294–307.

    Google Scholar 

  103. Invernizzi P, Pasini S, Selmi C, et al. Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun. 2009;33:12–6.

    Article  CAS  PubMed  Google Scholar 

  104. Selmi C, Cavaciocchi F, Lleo A, et al. Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front Immunol. 2014;5:128.

    PubMed  PubMed Central  Google Scholar 

  105. Lleo A, Zhang W, Zhao M, et al. DNA methylation profiling of the X chromosome reveals an aberrant demethylation on CXCR3 promoter in primary biliary cirrhosis. Clin Epigenetics. 2015;7:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Banales JM, Saez E, Uriz M, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology. 2012;56:687–97.

    Article  CAS  PubMed  Google Scholar 

  107. Erice O, Munoz-Garrido P, Vaquero J, et al. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation. Hepatology. 2018;67:1420–40.

    Article  CAS  PubMed  Google Scholar 

  108. de Vries AB, Janse M, Blokzijl H, et al. Distinctive inflammatory bowel disease phenotype in primary sclerosing cholangitis. World J Gastroenterol. 2015;21:1956–71.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Erlinger S. Chronic fibrosing cholangiopathies: a consequence of a defective HCO(3)(−) “umbrella”? Clin Res Hepatol Gastroenterol. 2011;35:85–8.

    Article  CAS  PubMed  Google Scholar 

  110. Dhillon AK, Kummen M, Troseid M, et al. Circulating markers of gut barrier function associated with disease severity in primary sclerosing cholangitis. Liver Int. 2019;39:371–81.

    Article  CAS  PubMed  Google Scholar 

  111. Tabibian JH, O’Hara SP, Splinter PL, et al. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology. 2014;59:2263–75.

    Article  CAS  PubMed  Google Scholar 

  112. Deutschmann K, Reich M, Klindt C, et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol basis Dis. 2018;1864:1319–25.

    Article  CAS  PubMed  Google Scholar 

  113. Keitel V, Haussinger D. TGR5 in cholangiocytes. Curr Opin Gastroenterol. 2013;29:299–304.

    Article  CAS  PubMed  Google Scholar 

  114. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54:173–84.

    Article  CAS  PubMed  Google Scholar 

  115. Gupta A, Dixon E. Epidemiology and risk factors: intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2017;6:101–4.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chinchilla-Lopez P, Aguilar-Olivos NE, Garcia-Gomez J, et al. Prevalence, risk factors, and survival of patients with intrahepatic cholangiocarcinoma. Ann Hepatol. 2017;16:565–8.

    Article  PubMed  Google Scholar 

  117. Tabibian JH, O’Hara SP, Trussoni CE, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology. 2016;63:185–96.

    Article  CAS  PubMed  Google Scholar 

  118. Liao L, Schneider KM, Galvez EJC, et al. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis. Gut. 2019;68(8):1477–92.

    Article  CAS  PubMed  Google Scholar 

  119. Sabino J, Vieira-Silva S, Machiels K, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut. 2016;65:1681–9.

    Article  CAS  PubMed  Google Scholar 

  120. Whiteside TL, Lasky S, Si L, et al. Immunologic analysis of mononuclear cells in liver tissues and blood of patients with primary sclerosing cholangitis. Hepatology. 1985;5:468–74.

    Article  CAS  PubMed  Google Scholar 

  121. Das KM, Vecchi M, Sakamaki S. A shared and unique epitope(s) on human colon, skin, and biliary epithelium detected by a monoclonal antibody. Gastroenterology. 1990;98:464–9.

    Article  CAS  PubMed  Google Scholar 

  122. Das KM. Immunopathogenesis of primary sclerosing cholangitis: possible role of a shared colonic and biliary epithelial antigen. J Gastroenterol Hepatol. 2004;19:S290–4.

    Article  Google Scholar 

  123. Grant AJ, Lalor PF, Salmi M, et al. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet. 2002;359:150–7.

    Article  PubMed  Google Scholar 

  124. Grant AJ, Lalor PF, Hubscher SG, et al. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology. 2001;33:1065–72.

    Article  CAS  PubMed  Google Scholar 

  125. Eksteen B, Grant AJ, Miles A, et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med. 2004;200:1511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Trivedi PJ, Tickle J, Vesterhus MN, et al. Vascular adhesion protein-1 is elevated in primary sclerosing cholangitis, is predictive of clinical outcome and facilitates recruitment of gut-tropic lymphocytes to liver in a substrate-dependent manner. Gut. 2018;67:1135–45.

    Article  CAS  PubMed  Google Scholar 

  127. Ponsioen CY, Kuiper H, Ten Kate FJ, et al. Immunohistochemical analysis of inflammation in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol. 1999;11:769–74.

    Article  CAS  PubMed  Google Scholar 

  128. Langeneckert AE, Lunemann S, Martrus G, et al. CCL21-expression and accumulation of CCR7(+) NK cells in livers of patients with primary sclerosing cholangitis. Eur J Immunol. 2019;49:758–69.

    Article  CAS  PubMed  Google Scholar 

  129. Colling R, Verrill C, Fryer E, et al. Bile duct basement membrane thickening in primary sclerosing cholangitis. Histopathology. 2016;68:819–24.

    Article  PubMed  Google Scholar 

  130. Terjung B, Sohne J, Lechtenberg B, et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut. 2010;59:808–16.

    Article  CAS  PubMed  Google Scholar 

  131. Mandal A, Dasgupta A, Jeffers L, et al. Autoantibodies in sclerosing cholangitis against a shared peptide in biliary and colon epithelium. Gastroenterology. 1994;106:185–92.

    Article  CAS  PubMed  Google Scholar 

  132. Broome U, Olsson R, Loof L, et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut. 1996;38:610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yanai H, Matalon S, Rosenblatt A, et al. Prognosis of primary sclerosing cholangitis in Israel is independent of coexisting inflammatory bowel Disease. J Crohns Colitis. 2015;9:177–84.

    Article  PubMed  Google Scholar 

  134. Fevery J, Van Steenbergen W, Van Pelt J, et al. Patients with large-duct primary sclerosing cholangitis and Crohn’s disease have a better outcome than those with ulcerative colitis, or without IBD. Aliment Pharmacol Ther. 2016;43:612–20.

    Article  CAS  PubMed  Google Scholar 

  135. Martin FM, Rossi RL, Nugent FW, et al. Surgical aspects of sclerosing cholangitis. Results in 178 patients. Ann Surg. 1990;212:551–6; discussion 556–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cangemi JR, Wiesner RH, Beaver SJ, et al. Effect of proctocolectomy for chronic ulcerative colitis on the natural history of primary sclerosing cholangitis. Gastroenterology. 1989;96:790–4.

    Article  CAS  PubMed  Google Scholar 

  137. Alabraba E, Nightingale P, Gunson B, et al. A re-evaluation of the risk factors for the recurrence of primary sclerosing cholangitis in liver allografts. Liver Transpl. 2009;15:330–40.

    Article  PubMed  Google Scholar 

  138. Buchholz BM, Lykoudis PM, Ravikumar R, et al. Role of colectomy in preventing recurrent primary sclerosing cholangitis in liver transplant recipients. World J Gastroenterol. 2018;24:3171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ong J, Bath MF, Swift C, et al. Does colectomy affect the progression of primary sclerosing cholangitis? A systematic review and meta-analysis. Gastroenterol Hepatol Bed Bench. 2018;11:277–83.

    PubMed  PubMed Central  Google Scholar 

  140. Bonato G, Cristoferi L, Strazzabosco M, et al. Malignancies in primary sclerosing cholangitis–A continuing threat. Dig Dis. 2015;33(Suppl 2):140–8.

    Article  PubMed  Google Scholar 

  141. Khaderi SA, Sussman NL. Screening for malignancy in primary sclerosing cholangitis (PSC). Curr Gastroenterol Rep. 2015;17:17.

    Article  PubMed  Google Scholar 

  142. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Claessen MM, Vleggaar FP, Tytgat KM, et al. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol. 2009;50:158–64.

    Article  PubMed  Google Scholar 

  144. Soetikno RM, Lin OS, Heidenreich PA, et al. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis: a meta-analysis. Gastrointest Endosc. 2002;56:48–54.

    Article  PubMed  Google Scholar 

  145. Lindstrom L, Lapidus A, Ost A, et al. Increased risk of colorectal cancer and dysplasia in patients with Crohn’s colitis and primary sclerosing cholangitis. Dis Colon Rectum. 2011;54:1392–7.

    Article  PubMed  Google Scholar 

  146. Singh S, Edakkanambeth Varayil J, Loftus EV Jr, et al. Incidence of colorectal cancer after liver transplantation for primary sclerosing cholangitis: a systematic review and meta-analysis. Liver Transpl. 2013;19:1361–9.

    Article  PubMed  Google Scholar 

  147. Jorgensen KK, Lindstrom L, Cvancarova M, et al. Colorectal neoplasia in patients with primary sclerosing cholangitis undergoing liver transplantation: a Nordic multicenter study. Scand J Gastroenterol. 2012;47:1021–9.

    Article  CAS  PubMed  Google Scholar 

  148. Guerra I, Bujanda L, Castro J, et al. Clinical characteristics, associated malignancies and management of primary sclerosing cholangitis in inflammatory bowel disease patients: a multicenter retrospective cohort study. J Crohns Colitis. 2019;13(12):1492–500.

    Google Scholar 

  149. Fevery J, Henckaerts L, Van Oirbeek R, et al. Malignancies and mortality in 200 patients with primary sclerosering cholangitis: a long-term single-centre study. Liver Int. 2012;32:214–22.

    Article  PubMed  Google Scholar 

  150. Gulamhusein AF, Eaton JE, Tabibian JH, et al. Duration of inflammatory bowel disease is associated with increased risk of cholangiocarcinoma in patients with primary sclerosing cholangitis and IBD. Am J Gastroenterol. 2016;111:705–11.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kobayashi S, Werneburg NW, Bronk SF, et al. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology. 2005;128:2054–65.

    Article  CAS  PubMed  Google Scholar 

  152. Boulter L, Guest RV, Kendall TJ, et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest. 2015;125:1269–85.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Komichi D, Tazuma S, Nishioka T, et al. Glycochenodeoxycholate plays a carcinogenic role in immortalized mouse cholangiocytes via oxidative DNA damage. Free Radic Biol Med. 2005;39:1418–27.

    Article  CAS  PubMed  Google Scholar 

  154. Lozano E, Sanchez-Vicente L, Monte MJ, et al. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Mol Cancer Res. 2014;12:91–100.

    Article  CAS  PubMed  Google Scholar 

  155. Liu R, Zhao R, Zhou X, et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology. 2014;60:908–18.

    Article  CAS  PubMed  Google Scholar 

  156. Kotlyar DS, Campbell MS, Reddy KR. Recurrence of diseases following orthotopic liver transplantation. Am J Gastroenterol. 2006;101:1370–8.

    Article  PubMed  Google Scholar 

  157. Vera A, Moledina S, Gunson B, et al. Risk factors for recurrence of primary sclerosing cholangitis of liver allograft. Lancet. 2002;360:1943–4.

    Article  PubMed  Google Scholar 

  158. Chung BK, Hirschfield GM. Immunogenetics in primary sclerosing cholangitis. Curr Opin Gastroenterol. 2017;33:93–8.

    CAS  PubMed  Google Scholar 

  159. Liu JZ, Hov JR, Folseraas T, et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet. 2013;45:670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Srivastava B, Mells GF, Cordell HJ, et al. Fine mapping and replication of genetic risk loci in primary sclerosing cholangitis. Scand J Gastroenterol. 2012;47:820–6.

    Article  CAS  PubMed  Google Scholar 

  161. Maroni L, van de Graaf SF, Hohenester SD, et al. Fucosyltransferase 2: a genetic risk factor for primary sclerosing cholangitis and Crohn’s disease–a comprehensive review. Clin Rev Allergy Immunol. 2015;48:182–91.

    Article  CAS  PubMed  Google Scholar 

  162. Cheung AC, LaRusso NF, Gores GJ, et al. Epigenetics in the primary biliary cholangitis and primary sclerosing cholangitis. Semin Liver Dis. 2017;37:159–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rubel LR, Seeff LB, Patel V. Primary biliary cirrhosis-primary sclerosing cholangitis overlap syndrome. Arch Pathol Lab Med. 1984;108:360–1.

    CAS  PubMed  Google Scholar 

  164. Burak KW, Urbanski SJ, Swain MG. A case of coexisting primary biliary cirrhosis and primary sclerosing cholangitis: a new overlap of autoimmune liver diseases. Dig Dis Sci. 2001;46:2043–7.

    Article  CAS  PubMed  Google Scholar 

  165. Kingham JG, Abbasi A. Co-existence of primary biliary cirrhosis and primary sclerosing cholangitis: a rare overlap syndrome put in perspective. Eur J Gastroenterol Hepatol. 2005;17:1077–80.

    Article  PubMed  Google Scholar 

  166. Jeevagan A. Overlap of primary biliary cirrhosis and primary sclerosing cholangitis – a rare coincidence or a new syndrome. Int J Gen Med. 2010;3:143–6.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Oliveira EM, Oliveira PM, Becker V, et al. Overlapping of primary biliary cirrhosis and small duct primary sclerosing cholangitis: first case report. J Clin Med Res. 2012;4:429–33.

    PubMed  PubMed Central  Google Scholar 

  168. Czaja AJ. The overlap syndromes of autoimmune hepatitis. Dig Dis Sci. 2013;58:326–43.

    CAS  PubMed  Google Scholar 

  169. Muratori P, Granito A, Pappas G, et al. The serological profile of the autoimmune hepatitis/primary biliary cirrhosis overlap syndrome. Am J Gastroenterol. 2009;104:1420–5.

    Article  PubMed  Google Scholar 

  170. Himoto T, Yoneyama H, Kurokohchi K, et al. Clinical significance of autoantibodies to p53 protein in patients with autoimmune liver diseases. Can J Gastroenterol. 2012;26:125–9.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Czaja AJ, Shums Z, Norman GL. Frequency and significance of antibodies to soluble liver antigen/liver pancreas in variant autoimmune hepatitis. Autoimmunity. 2002;35:475–83.

    Article  CAS  PubMed  Google Scholar 

  172. Csepregi A, Obermayer-Straub P, Kneip S, et al. Characterization of a lipoyl domain-independent B-cell autoepitope on the human branched-chain acyltransferase in primary biliary cirrhosis and overlap syndrome with autoimmune hepatitis. Clin Dev Immunol. 2003;10:173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Coss Adame E, Granados J, Uribe M, et al. Does HLA-DR7 differentiate the overlap syndrome of auto-immune hepatitis-primary biliary cirrhosis (AIH-PBC) from those with auto-immune hepatitis type 1? Ann Hepatol. 2011;10:28–32.

    Article  PubMed  Google Scholar 

  174. Zepeda-Gomez S, Montano-Loza A, Zapata-Colindres JC, et al. HLA-DR allele frequencies in Mexican mestizos with autoimmune liver diseases including overlap syndromes. Immunol Investig. 2009;38:276–83.

    Article  CAS  Google Scholar 

  175. Wang Q, Selmi C, Zhou X, et al. Epigenetic considerations and the clinical reevaluation of the overlap syndrome between primary biliary cirrhosis and autoimmune hepatitis. J Autoimmun. 2013;41:140–5.

    Article  PubMed  CAS  Google Scholar 

  176. Schulz L, Sebode M, Weidemann SA, et al. Variant syndromes of primary biliary cholangitis. Best Pract Res Clin Gastroenterol. 2018;34–35:55–61.

    Article  PubMed  Google Scholar 

  177. Malik N, Venkatesh SK. Imaging of autoimmune hepatitis and overlap syndromes. Abdom Radiol (NY). 2017;42:19–27.

    Article  Google Scholar 

  178. Cabibi D, Tarantino G, Barbaria F, et al. Intrahepatic IgG/IgM plasma cells ratio helps in classifying autoimmune liver diseases. Dig Liver Dis. 2010;42:585–92.

    Article  CAS  PubMed  Google Scholar 

  179. Moreira RK, Lee H, Stapp R, et al. Immunohistochemical staining of inflammatory cells in liver biopsy specimens of patients with autoimmune hepatitis, primary biliary cirrhosis, and overlap syndromes. Am J Clin Pathol. 2010;134:852–3.

    Article  PubMed  Google Scholar 

  180. Alric L, Thebault S, Selves J, et al. Characterization of overlap syndrome between primary biliary cirrhosis and autoimmune hepatitis according to antimitochondrial antibodies status. Gastroenterol Clin Biol. 2007;31:11–6.

    Article  PubMed  Google Scholar 

  181. Nguyen HH, Shaheen AA, Baeza N, et al. Evaluation of classical and novel autoantibodies for the diagnosis of Primary Biliary Cholangitis-Autoimmune Hepatitis Overlap Syndrome (PBC-AIH OS). PLoS One. 2018;13:e0193960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Zenouzi R, Lohse AW. Long-term outcome in PSC/AIH “overlap syndrome”: does immunosuppression also treat the PSC component? J Hepatol. 2014;61:1189–91.

    Article  PubMed  Google Scholar 

  183. Floreani A, Baragiotta A, Guido M. Primary biliary cirrhosis-autoimmune hepatitis overlap syndrome: a cause of resistance to ursodeoxycholic treatment. Dig Liver Dis. 2003;35:128–9.

    Article  CAS  PubMed  Google Scholar 

  184. Chazouilleres O, Wendum D, Serfaty L, et al. Primary biliary cirrhosis-autoimmune hepatitis overlap syndrome: clinical features and response to therapy. Hepatology. 1998;28:296–301.

    Article  CAS  PubMed  Google Scholar 

  185. Hennes EM, Zeniya M, Czaja AJ, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48:169–76.

    Article  PubMed  Google Scholar 

  186. Kuiper EM, Zondervan PE, van Buuren HR. Paris criteria are effective in diagnosis of primary biliary cirrhosis and autoimmune hepatitis overlap syndrome. Clin Gastroenterol Hepatol. 2010;8:530–4.

    Article  PubMed  Google Scholar 

  187. Neuhauser M, Bjornsson E, Treeprasertsuk S, et al. Autoimmune hepatitis-PBC overlap syndrome: a simplified scoring system may assist in the diagnosis. Am J Gastroenterol. 2010;105:345–53.

    Article  CAS  PubMed  Google Scholar 

  188. Dyson JK, De Martin E, Dalekos GN, et al. Review article: unanswered clinical and research questions in autoimmune hepatitis-conclusions of the International Autoimmune Hepatitis Group Research Workshop. Aliment Pharmacol Ther. 2019;49:528–36.

    Article  PubMed  Google Scholar 

  189. Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. The clinical usage and definition of autoantibodies in immune-mediated liver disease: a comprehensive overview. J Autoimmun. 2018;95:144–58.

    Article  CAS  PubMed  Google Scholar 

  190. Leung PS, Chuang DT, Wynn RM, et al. Autoantibodies to BCOADC-E2 in patients with primary biliary cirrhosis recognize a conformational epitope. Hepatology. 1995;22:505–13.

    CAS  PubMed  Google Scholar 

  191. Masuda J, Omagari K, Ohba K, et al. Correlation between histopathological findings of the liver and IgA class antibodies to 2-oxo-acid dehydrogenase complex in primary biliary cirrhosis. Dig Dis Sci. 2003;48:932–8.

    Article  CAS  PubMed  Google Scholar 

  192. Dubel L, Tanaka A, Leung PS, et al. Autoepitope mapping and reactivity of autoantibodies to the dihydrolipoamide dehydrogenase-binding protein (E3BP) and the glycine cleavage proteins in primary biliary cirrhosis. Hepatology. 1999;29:1013–8.

    Article  CAS  PubMed  Google Scholar 

  193. Palmer JM, Jones DE, Quinn J, et al. Characterization of the autoantibody responses to recombinant E3 binding protein (protein X) of pyruvate dehydrogenase in primary biliary cirrhosis. Hepatology. 1999;30:21–6.

    Article  CAS  PubMed  Google Scholar 

  194. Koike K, Ishibashi H, Koike M. Immunoreactivity of porcine heart dihydrolipoamide acetyl- and succinyl-transferases (PDC-E2, OGDC-E2) with primary biliary cirrhosis sera: characterization of the autoantigenic region and effects of enzymatic delipoylation and relipoylation. Hepatology. 1998;27:1467–74.

    Article  CAS  PubMed  Google Scholar 

  195. Shuai Z, Wang J, Badamagunta M, et al. The fingerprint of antimitochondrial antibodies and the etiology of primary biliary cholangitis. Hepatology. 2017;65:1670–82.

    Article  CAS  PubMed  Google Scholar 

  196. Bauer A, Habior A. Detection of autoantibodies against nucleoporin p62 in sera of patients with primary biliary cholangitis. Ann Lab Med. 2019;39:291–8.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Zuchner D, Sternsdorf T, Szostecki C, et al. Prevalence, kinetics, and therapeutic modulation of autoantibodies against Sp100 and promyelocytic leukemia protein in a large cohort of patients with primary biliary cirrhosis. Hepatology. 1997;26:1123–30.

    CAS  PubMed  Google Scholar 

  198. Mytilinaiou MG, Meyer W, Scheper T, et al. Diagnostic and clinical utility of antibodies against the nuclear body promyelocytic leukaemia and Sp100 antigens in patients with primary biliary cirrhosis. Clin Chim Acta. 2012;413:1211–6.

    Article  CAS  PubMed  Google Scholar 

  199. Parveen S, Morshed SA, Nishioka M. High prevalence of antibodies to recombinant CENP-B in primary biliary cirrhosis: nuclear immunofluorescence patterns and ELISA reactivities. J Gastroenterol Hepatol. 1995;10:438–45.

    Article  CAS  PubMed  Google Scholar 

  200. Stinton LM, Swain M, Myers RP, et al. Autoantibodies to GW bodies and other autoantigens in primary biliary cirrhosis. Clin Exp Immunol. 2011;163:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hitomi Y, Ueno K, Kawai Y, et al. POGLUT1, the putative effector gene driven by rs2293370 in primary biliary cholangitis susceptibility locus chromosome 3q13.33. Sci Rep. 2019;9:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Nishida N, Aiba Y, Hitomi Y, et al. NELFCD and CTSZ loci are associated with jaundice-stage progression in primary biliary cholangitis in the Japanese population. Sci Rep. 2018;8:8071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Hitomi Y, Nakatani K, Kojima K, et al. NFKB1 and MANBA confer disease susceptibility to primary biliary cholangitis via independent putative primary functional variants. Cell Mol Gastroenterol Hepatol. 2018;7:515–32.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Yasunami M, Nakamura H, Tokunaga K, et al. Principal contribution of HLA-DQ alleles, DQB1∗06:04 and DQB1∗03:01, to disease resistance against primary biliary cholangitis in a Japanese population. Sci Rep. 2017;7:11093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Hitomi Y, Kojima K, Kawashima M, et al. Identification of the functional variant driving ORMDL3 and GSDMB expression in human chromosome 17q12-21 in primary biliary cholangitis. Sci Rep. 2017;7:2904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Li P, Lu G, Wang L, et al. A rare nonsynonymous variant in the lipid metabolic gene HELZ2 related to primary biliary cirrhosis in Chinese Han. Allergy Asthma Clin Immunol. 2016;12:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Tang R, Wei Y, Li Z, et al. A common variant in CLDN14 is associated with primary biliary cirrhosis and bone mineral density. Sci Rep. 2016;6:19877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhao DT, Liao HY, Zhang X, et al. Human leucocyte antigen alleles and haplotypes and their associations with antinuclear antibodies features in Chinese patients with primary biliary cirrhosis. Liver Int. 2014;34:220–6.

    Article  CAS  PubMed  Google Scholar 

  209. Invernizzi P, Ransom M, Raychaudhuri S, et al. Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis. Genes Immun. 2012;13:461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Umemura T, Joshita S, Ichijo T, et al. Human leukocyte antigen class II molecules confer both susceptibility and progression in Japanese patients with primary biliary cirrhosis. Hepatology. 2012;55:506–11.

    Article  CAS  PubMed  Google Scholar 

  211. Tanaka A, Ohira H, Kikuchi K, et al. Genetic association of Fc receptor-like 3 polymorphisms with susceptibility to primary biliary cirrhosis: ethnic comparative study in Japanese and Italian patients. Tissue Antigens. 2011;77:239–43.

    Article  CAS  PubMed  Google Scholar 

  212. Aiba Y, Nakamura M, Joshita S, et al. Genetic polymorphisms in CTLA4 and SLC4A2 are differentially associated with the pathogenesis of primary biliary cirrhosis in Japanese patients. J Gastroenterol. 2011;46:1203–12.

    Article  CAS  PubMed  Google Scholar 

  213. Juran BD, Atkinson EJ, Larson JJ, et al. Common genetic variation and haplotypes of the anion exchanger SLC4A2 in primary biliary cirrhosis. Am J Gastroenterol. 2009;104:1406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Poupon R, Ping C, Chretien Y, et al. Genetic factors of susceptibility and of severity in primary biliary cirrhosis. J Hepatol. 2008;49:1038–45.

    Article  CAS  PubMed  Google Scholar 

  215. Prieto J, Qian C, Garcia N, et al. Abnormal expression of anion exchanger genes in primary biliary cirrhosis. Gastroenterology. 1993;105:572–8.

    Article  CAS  PubMed  Google Scholar 

  216. Jendrek ST, Gotthardt D, Nitzsche T, et al. Anti-GP2 IgA autoantibodies are associated with poor survival and cholangiocarcinoma in primary sclerosing cholangitis. Gut. 2017;66:137–44.

    Article  CAS  PubMed  Google Scholar 

  217. Alberts R, de Vries EMG, Goode EC, et al. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis. Gut. 2018;67:1517–24.

    Article  CAS  PubMed  Google Scholar 

  218. Ji SG, Juran BD, Mucha S, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet. 2017;49:269–73.

    Article  CAS  PubMed  Google Scholar 

  219. Ellinghaus D, Folseraas T, Holm K, et al. Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology. 2013;58:1074–83.

    Article  CAS  PubMed  Google Scholar 

  220. Folseraas T, Melum E, Rausch P, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol. 2012;57:366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Melum E, Franke A, Schramm C, et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet. 2011;43:17–9.

    Article  CAS  PubMed  Google Scholar 

  222. Henriksen EKK, Viken MK, Wittig M, et al. HLA haplotypes in primary sclerosing cholangitis patients of admixed and non-European ancestry. HLA. 2017;90:228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Karlsen TH, Franke A, Melum E, et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology. 2010;138:1102–11.

    Article  PubMed  Google Scholar 

  224. Bowlus CL, Li CS, Karlsen TH, et al. Primary sclerosing cholangitis in genetically diverse populations listed for liver transplantation: unique clinical and human leukocyte antigen associations. Liver Transpl. 2010;16:1324–30.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Donaldson PT, Farrant JM, Wilkinson ML, et al. Dual association of HLA DR2 and DR3 with primary sclerosing cholangitis. Hepatology. 1991;13:129–33.

    Article  CAS  PubMed  Google Scholar 

  226. Hirschfield GM, Heathcote EJ. Autoimmune hepatitis: a guide for practicing clinicians: Humana Press; 2012.

    Google Scholar 

Download references

Acknowledgements

We acknowledge with thanks John M. Vierling, MD for making available to us figures and tables that are featured in this chapter. Supported by awards from NIH/NIDDK U01 DK 065201, U54 DK 083909, and R01 DK 119913 (to HLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert L. Bonkovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovalic, A.J., Bonkovsky, H.L. (2020). The Pathogenesis of Autoimmune Liver Diseases. In: Russo, M. (eds) Diagnosis and Management of Autoimmune Hepatitis. Springer, Cham. https://doi.org/10.1007/978-3-030-33628-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33628-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33627-1

  • Online ISBN: 978-3-030-33628-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics