Skip to main content

ALIME: Autoencoder Based Approach for Local Interpretability

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2019 (IDEAL 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11871))

Abstract

Machine learning and especially deep learning have garnered tremendous popularity in recent years due to their increased performance over other methods. The availability of large amount of data has aided in the progress of deep learning. Nevertheless, deep learning models are opaque and often seen as black boxes. Thus, there is an inherent need to make the models interpretable, especially so in the medical domain. In this work, we propose a locally interpretable method, which is inspired by one of the recent tools that has gained a lot of interest, called local interpretable model-agnostic explanations (LIME). LIME generates single instance level explanation by artificially generating a dataset around the instance (by randomly sampling and using perturbations) and then training a local linear interpretable model. One of the major issues in LIME is the instability in the generated explanation, which is caused due to the randomly generated dataset. Another issue in these kind of local interpretable models is the local fidelity. We propose novel modifications to LIME by employing an autoencoder, which serves as a better weighting function for the local model. We perform extensive comparisons with different datasets and show that our proposed method results in both improved stability, as well as local fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp. 153–160 (2007)

    Google Scholar 

  2. Bien, J., Tibshirani, R., et al.: Prototype selection for interpretable classification. Ann. Appl. Stat. 5(4), 2403–2424 (2011)

    Article  MathSciNet  Google Scholar 

  3. Diaconis, P., Efron, B.: Computer-intensive methods in statistics. Sci. Am. 248(5), 116–131 (1983)

    Article  Google Scholar 

  4. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  5. Hall, P., Gill, N., Kurka, M., Phan, W.: Machine learning interpretability with H2O driverless AI, February 2019. http://docs.h2o.ai

  6. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1885–1894 (2017). JMLR.org

  7. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  8. Laugel, T., Renard, X., Lesot, M.J., Marsala, C., Detyniecki, M.: Defining locality for surrogates in post-hoc interpretablity. arXiv preprint arXiv:1806.07498 (2018)

  9. Mangasarian, O.L., Street, W.N., Wolberg, W.H.: Breast cancer diagnosis and prognosis via linear programming. Oper. Res. 43(4), 570–577 (1995)

    Article  MathSciNet  Google Scholar 

  10. Molnar, C.: Interpretable machine learning (2019). https://christophm.github.io/interpretable-ml-book/

  11. Ramana, B.V., Babu, M.S.P., Venkateswarlu, N., et al.: A critical study of selected classification algorithms for liver disease diagnosis. Int. J. Database Manag. Syst. 3(2), 101–114 (2011)

    Article  Google Scholar 

  12. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  13. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  14. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  15. Zafar, M.R., Khan, N.M.: DLIME: a deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. In: In Proceeding of ACM SIGKDD Workshop on Explainable AI/ML (XAI) for Accountability, Fairness, and Transparency. ACM, Anchorage (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharath M. Shankaranarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shankaranarayana, S.M., Runje, D. (2019). ALIME: Autoencoder Based Approach for Local Interpretability. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33607-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33606-6

  • Online ISBN: 978-3-030-33607-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics