Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 306 Accesses

Abstract

In Chap. 2 we showed that a measurement of temperature has to be accompanied with a measurement of voltage as well. We discuss here the experimental consequences of the results of Chap. 2. The best spatial resolution so far achieved in thermal imaging of nanoscale conductors is a few nanometers, which is much coarser than routinely achieved for other physical properties. In this chapter, we propose the scanning tunneling thermometer which is capable of mapping sub-angstrom temperature variations in nanoscale conductors. The proposed measurement scheme involves two scanning probe operations to measure the conductance and thermopower, respectively. These two measurements are shown to determine the local temperature with high accuracy in nanoscale conductors where the Wiedemann-Franz law holds quite generally. Our method, if implemented experimentally, would constitute a dramatic improvement of the spatial resolution of scanning thermometry by some two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a previous version of this dissertation, we used the electron particle current instead of the electrical current. These are equivalent conditions but result in an additional factor of e in defining the linear response coefficient \(\mathcal {L}^{(0)}_{p\alpha }\) in Eq. (4.2).

  2. 2.

    \(\mathcal {L}^{(\nu )}_{p\alpha }\) do not coincide with definitions used in Refs. [31, 32, 34] and Chap. 2: e.g., \(\mathcal {L}^{(0)}_{p\alpha }\) used here has an additional factor of e 2. One factor of e appears since we use electrical current instead of the particle current (see footnote 1). An additional factor of e appears since we write the currents in terms of the bias voltage instead of the bias chemical potential in Eq. (4.2).

  3. 3.

    The Wiedemann–Franz law can be derived explicitly for elastic transport as shown in Appendix C. The first two terms in the Sommerfeld series are shown explicitly.

  4. 4.

    This would be an equivalent realization of our experiment since current conservation would imply that the transmission functions satisfy \(\mathcal {T}_{p\alpha }=\mathcal {T}_{\alpha p}\). In principle, the experiment can be carried out even in the presence of a magnetic flux Φ but, since \(\mathcal {T}_{p\alpha }(\Phi )=\mathcal {T}_{\alpha p}(-\Phi )\), we would have to invert the magnetic field to infer the \(\mathcal {L}^{(\nu )}_{p\alpha }\) coefficients [40].

References

  1. A. Shastry, S. Inui, C.A. Stafford, ArXiv e-prints 1901.09168 (2019)

    Google Scholar 

  2. G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nature 500(7460), 54 (2013). http://dx.doi.org/10.1038/nature12373. Letter

  3. C.Y. Jin, Z. Li, R.S. Williams, K.C. Lee, I. Park, Nano Lett. 11(11), 4818 (2011). https://doi.org/10.1021/nl2026585. http://dx.doi.org/10.1021/nl2026585. PMID: 21967343

    Article  ADS  Google Scholar 

  4. M. Mecklenburg, W.A. Hubbard, E.R. White, R. Dhall, S.B. Cronin, S. Aloni, B.C. Regan, Science 347(6222), 629 (2015). https://doi.org/10.1126/science.aaa2433. http://science.sciencemag.org/content/347/6222/629

    Article  ADS  Google Scholar 

  5. J.S. Reparaz, E. Chavez-Angel, M.R. Wagner, B. Graczykowski, J. Gomis-Bresco, F. Alzina, C.M.S. Torres, Rev. Sci. Instrum. 85(3), 034901 (2014). https://doi.org/10.1063/1.4867166. http://dx.doi.org/10.1063/1.4867166

    Article  ADS  Google Scholar 

  6. P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J.H. Shim, D. Suter, H. Sumiya, J. Isoya, J. Wrachtrup, Nano Lett. 13(6), 2738 (2013). https://doi.org/10.1021/nl401216y. http://dx.doi.org/10.1021/nl401216y. PMID: 23721106

    Article  ADS  Google Scholar 

  7. D. Teyssieux, L. Thiery, B. Cretin, Rev. Sci. Instrum. 78(3), 034902 (2007). https://doi.org/10.1063/1.2714040. http://dx.doi.org/10.1063/1.2714040

    Article  ADS  Google Scholar 

  8. A. Majumdar, Annu. Rev. Mater. Sci. 29, 505 (1999). https://doi.org/10.1146/annurev.matsci.29.1.505

    Article  ADS  Google Scholar 

  9. K. Kim, W. Jeong, W. Lee, P. Reddy, ACS Nano 6(5), 4248 (2012). https://doi.org/10.1021/nn300774n. http://dx.doi.org/10.1021/nn300774n. PMID: 22530657

    Article  Google Scholar 

  10. W. Jeong, S. Hur, E. Meyhofer, P. Reddy, Nanoscale Microscale Thermophys. Eng. 19(4), 279 (2015). https://doi.org/10.1080/15567265.2015.1109740. http://dx.doi.org/10.1080/15567265.2015.1109740

    Article  ADS  Google Scholar 

  11. F. Menges, P. Mensch, H. Schmid, H. Riel, A. Stemmer, B. Gotsmann, Nat. Commun. 7, 10874 EP (2016). http://dx.doi.org/10.1038/ncomms10874. Article

  12. P. Muralt, D.W. Pohl, Appl. Phys. Lett. 48(8), 514 (1986). https://doi.org/http://dx.doi.org/10.1063/1.96491. http://scitation.aip.org/content/aip/journal/apl/48/8/10.1063/1.96491

    Article  ADS  Google Scholar 

  13. B.G. Briner, R.M. Feenstra, T.P. Chin, J.M. Woodall, Phys. Rev. B 54, R5283 (1996). https://doi.org/10.1103/PhysRevB.54.R5283. https://link.aps.org/doi/10.1103/PhysRevB.54.R5283

    Article  ADS  Google Scholar 

  14. G. Ramaswamy, A.K. Raychaudhuri, Appl. Phys. Lett. 75(13), 1982 (1999). https://doi.org/10.1063/1.124892. http://dx.doi.org/10.1063/1.124892

    Article  ADS  Google Scholar 

  15. W. Wang, K. Munakata, M. Rozler, M.R. Beasley, Phys. Rev. Lett. 110(23) (2013). https://doi.org/10.1103/PhysRevLett.110.236802

  16. K.W. Clark, X.G. Zhang, G. Gu, J. Park, G. He, R.M. Feenstra, A.P. Li, Phys. Rev. X 4, 011021 (2014). https://doi.org/10.1103/PhysRevX.4.011021. http://link.aps.org/doi/10.1103/PhysRevX.4.011021

    Google Scholar 

  17. P. Willke, T. Druga, R.G. Ulbrich, M.A. Schneider, M. Wenderoth, Nat. Commun. 6, 6399 (2015). http://dx.doi.org/10.1038/ncomms7399

    Article  ADS  Google Scholar 

  18. R. Landauer, IBM J. Res. Dev. 1(3), 223 (1957). https://doi.org/10.1147/rd.13.0223

    Article  Google Scholar 

  19. Y. Dubi, M. Di Ventra, Nano Lett. 9, 97 (2009)

    Article  ADS  Google Scholar 

  20. J.P. Bergfield, S.M. Story, R.C. Stafford, C.A. Stafford, ACS Nano 7(5), 4429 (2013). https://doi.org/10.1021/nn401027u

    Article  Google Scholar 

  21. J. Meair, J.P. Bergfield, C.A. Stafford, P. Jacquod, Phys. Rev. B 90, 035407 (2014). https://doi.org/10.1103/PhysRevB.90.035407. http://link.aps.org/doi/10.1103/PhysRevB.90.035407

    Article  ADS  Google Scholar 

  22. J.P. Bergfield, M.A. Ratner, C.A. Stafford, M. Di Ventra, Phys. Rev. B 91, 125407 (2015). https://doi.org/10.1103/PhysRevB.91.125407. http://link.aps.org/doi/10.1103/PhysRevB.91.125407

    Article  ADS  Google Scholar 

  23. K. Kim, J. Chung, G. Hwang, O. Kwon, J.S. Lee, ACS Nano 5(11), 8700 (2011). https://doi.org/10.1021/nn2026325. http://dx.doi.org/10.1021/nn2026325. PMID: 21999681

    Article  Google Scholar 

  24. S. Gomès, A. Assy, P.O. Chapuis, Phys. Status Solidi A 212(3), 477 (2015). https://doi.org/10.1002/pssa.201400360. http://dx.doi.org/10.1002/pssa.201400360

    Article  ADS  Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks/Cole - Thomson Learning, Pacific Grove 1976)

    Google Scholar 

  26. N. Mosso, U. Drechsler, F. Menges, P. Nirmalraj, S. Karg, H. Riel, B. Gotsmann, Nat Nano 12(5), 430 (2017). Letter. http://dx.doi.org/10.1038/nnano.2016.302

  27. L. Cui, W. Jeong, S. Hur, M. Matt, J.C. Klöckner, F. Pauly, P. Nielaba, J.C. Cuevas, E. Meyhofer, P. Reddy, Science 355(6330), 1192 (2017). https://doi.org/10.1126/science.aam6622. http://science.sciencemag.org/content/355/6330/1192

    Article  ADS  Google Scholar 

  28. H.L. Engquist, P.W. Anderson, Phys. Rev. B 24, 1151 (1981). https://doi.org/10.1103/PhysRevB.24.1151. http://link.aps.org/doi/10.1103/PhysRevB.24.1151

    Article  ADS  Google Scholar 

  29. J.P. Bergfield, C.A. Stafford, Phys. Rev. B 90, 235438 (2014). https://doi.org/10.1103/PhysRevB.90.235438. http://link.aps.org/doi/10.1103/PhysRevB.90.235438

    Article  ADS  Google Scholar 

  30. A. Shastry, C.A. Stafford, Phys. Rev. B 92, 245417 (2015). https://doi.org/10.1103/PhysRevB.92.245417. http://link.aps.org/doi/10.1103/PhysRevB.92.245417

    Article  ADS  Google Scholar 

  31. C.A. Stafford, Phys. Rev. B 93, 245403 (2016). https://doi.org/10.1103/PhysRevB.93.245403. http://link.aps.org/doi/10.1103/PhysRevB.93.245403

    Article  ADS  Google Scholar 

  32. A. Shastry, C.A. Stafford, Phys. Rev. B 94, 155433 (2016). https://doi.org/10.1103/PhysRevB.94.155433. http://link.aps.org/doi/10.1103/PhysRevB.94.155433

    Article  ADS  Google Scholar 

  33. J.R. Widawsky, P. Darancet, J.B. Neaton, L. Venkataraman, Nano Lett. 12(1), 354 (2012). https://doi.org/10.1021/nl203634m. http://dx.doi.org/10.1021/nl203634m. PMID: 22128800

    Article  ADS  Google Scholar 

  34. J.P. Bergfield, C.A. Stafford, Nano Lett. 9, 3072 (2009)

    Article  ADS  Google Scholar 

  35. J. Crossno, J.K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T.A. Ohki, K.C. Fong, Science 351(6277), 1058 (2016). https://doi.org/10.1126/science.aad0343. http://science.sciencemag.org/content/351/6277/1058

    Article  ADS  Google Scholar 

  36. M. Tsutsui, T. Kawai, M. Taniguchi, Sci. Rep. 2 (2012). Article Number 21. http://dx.doi.org/10.1038/srep00217

  37. J.P. Bergfield, J.D. Barr, C.A. Stafford, Beilstein J. Nanotechnol. 3, 40 (2012). https://doi.org/10.3762/bjnano.3.5

    Article  Google Scholar 

  38. M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J.C. Cuevas, J.M. van Ruitenbeek, Phys. Rev. Lett. 101, 046801 (2008)

    Article  ADS  Google Scholar 

  39. J.D. Barr, C.A. Stafford, J.P. Bergfield, Phys. Rev. B 86, 115403 (2012). https://doi.org/10.1103/PhysRevB.86.115403. https://link.aps.org/doi/10.1103/PhysRevB.86.115403

    Article  ADS  Google Scholar 

  40. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shastry, A. (2019). STM as a Thermometer. In: Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33574-8_4

Download citation

Publish with us

Policies and ethics