Skip to main content

Radiation in the Arctic Atmosphere and Atmosphere – Cryosphere Feedbacks

  • Chapter
  • First Online:
Physics and Chemistry of the Arctic Atmosphere

Abstract

Arctic surface temperature has been increasing at a rate 2–3 times that of the global average in the last half century. Enhanced warming of the Arctic, or Arctic Amplification, is a climatic response to external forcing. Despite good results obtained by climatic models for the globe, the largest intermodel differences in surface temperature warming are found in the Arctic. The magnitude of this warming drives many different processes and determines the evolution of many climatic parameters such as clouds, sea ice extent, and land ice sheet mass. The Arctic Amplification can be attributed to the peculiar feedback processes that are triggered in the Arctic. Most of these processes include radiation interaction with the atmosphere and with the surface, all of them contributing to the radiation budget. It is then mandatory to correctly evaluate this budget both at the surface and at the top of the atmosphere and in the solar and thermal spectra. This can be done using both direct observations, from ground and from space, and model simulation via radiation transfer codes. This last approach need many observed input parameters anyhow.

In this contribution results on the evaluation of the radiation budget in the Arctic are first reviewed. Follows a detailed description of the effects of the most important atmospheric gases (carbon dioxide, methane, ozone etc.) on both shortwave and longwave radiation ranges. The same is illustrated for aerosol loading in the Arctic, based on a large dataset of aerosol radiative properties measured by means of sun-photometers in numerous Arctic stations. Finally, the effect of the surface reflectivity characteristics on the radiation budget is illustrated by means of albedo models specific for the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ångström, A. (1964). The parameters of atmospheric turbidity. Tellus, 16(1), 64–75. https://doi.org/10.1111/j.2153-3490.1964.tb00144.x.

    Article  Google Scholar 

  • Barkstrom, B. R., & Smith, G. L. (1986). The earth radiation budget experiment: Science and implementation. Review of Geophysics, 24(2), 379–390. https://doi.org/10.1029/ RG024i002p00379.

    Article  Google Scholar 

  • Benedict, W. S. (1948). New bands in the vibration – Rotation spectrum of water vapor. Physical Review, 74, 1246–1247.

    Google Scholar 

  • Benedict, W. S., Gailar, N., & Plyler, E. K. (1956). Rotation-vibration spectra of deuterated water vapor. The Journal of Chemical Physics, 24(6), 1139–1165. https://doi.org/10.1063/1.1742731.

    Article  Google Scholar 

  • Berk, A., Anderson, G. P., Acharya, P. K., Chetwynd, J. H., Bernstein, L. S., Shettle, E. P., Matthew, M. W., & Adler-Golden, S. M. (1999). MODTRAN4 user’s manual. Air Force Research Laboratory, Space Vehicles Directorate, Air Force Materiel Command, Hanscom AFB, MA 01731-3010, 1 June 1999. Last revised 17 April 2000, 94 pp.

    Google Scholar 

  • Bess, T. D., & Smith, G. L. Interannual variability of Arctic radiation balance in July. Available at https://ams.confex.com/ams/pdfpapers/102125.pdf

  • Bignell, K. J. (1970). The water-vapour infra-red continuum. Quarterly Journal of the Royal Meteorological Society, 96(409), 390–403. https://doi.org/10.1002/qj.49709640904.

    Article  Google Scholar 

  • Born, M., & Wolf, E. (1975). Principles of optics, electromagnetic theory of propagation, interference and direction of light (5th edn). Oxford: Pergamon Press.

    Google Scholar 

  • Bothwell, G. W., Hansen, E. G., Vargo, R. E., & Miller, K. C. (2002). The multiangle imaging spectro-radiometer science data system, its products, tools, and performance. IEEE Transactions on Geoscience and Remote Sensing, 40, 1467–1476. https://doi.org/ 10.1109/TGRS.2002.801152.

    Article  Google Scholar 

  • Bromwich, D. H., Wang, S.-H., & Monaghan, A. J. (2002). ERA-40 Representation of the Arctic Atmospheric Moisture Budget (ERA-40 Project Report Series 3). Workshop on Re-Analysis, 5–9 November, 2001, European Center for Medium Range Weather Forecasts, pp. 287–297.

    Google Scholar 

  • Burch D. E. (1970). Investigation of the absorption of infrared radiation by atmospheric gases (Semi-annual technical report, Contract No. F 19628-69-C-0263). Newport Beach: Philco-Ford Corporation.

    Google Scholar 

  • Burch, D. E., Gryvnak, D. A., & Pembrook, J. D. (1972). Infrared absorption bands of nitrous oxide (AFCRL-72-0387 (U-5037) Report, Contract No. F19628-69-C-0263, Project No. 5130, 87 pp). Newport Beach: Philco-Ford Corporation, Aeronutronic Division.

    Google Scholar 

  • Bush, B. C., & Valero, F. P. J. (2002). Spectral aerosol radiative forcing at the surface during the Indian Ocean experiment (INDOEX). Journal of Geophysical Research, Atmospheres, 107, 8003. https://doi.org/10.1029/2000JD000020.

    Article  Google Scholar 

  • Bush, B. C., & Valero, F. P. J. (2003). Surface aerosol radiative forcing at Gosan during the ACE-Asia campaign. Journal of Geophysical Research, Atmospheres, 108, 8660. https://doi.org/10.1029/2002JD003233.

    Article  Google Scholar 

  • Christopher, S. A., & Zhang, J. (2002). Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans. Geophysical Research Letters, 29(18), 1859. https://doi.org/10.1029/2002GL014803.

    Article  Google Scholar 

  • Chylek, P., & Coakley, J. A., Jr. (1974). Aerosols and climate. Science, 183, 75–77. https://doi.org/10.1126/science.183.4120.75.

    Article  Google Scholar 

  • Coakley, J. A., Jr., & Chylek, P. (1975). The two-stream approximation in radiative transfer: Including the angle of the incident radiation. Journal of the Atmospheric Sciences, 32(2), 409–418. https://doi.org/10.1175/1520-0469(1975)032<0409:TTSAIR>2.0.CO;2.

    Article  Google Scholar 

  • Cox, C., & Munk, W. (1954). Statistics of the sea surface derived from sun glitter. Journal of Marine Research, 13, 198–227.

    Google Scholar 

  • Cullather, R. I., Bromwich, D. H., & Serreze, M. C. (2000). The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I: Comparison with observations and previous studies. Journal of Climate, 13, 923–937. https://doi.org/10.1175/1520-0442(2000)013<0923:TAHCOT>2.0.CO;2.

    Article  Google Scholar 

  • Damiani, A., De Simone, S., Rafanelli, C., Cordero, R. R., & Laurenza, M. (2012). Three years of ground-based total ozone measurements in the Arctic: Comparison with OMI, GOME and SCIAMACHY satellite data. Remote Sensing of Environment, 127, 162–180. https://doi.org/10.1016/j.rse.2012.08.023.

    Article  Google Scholar 

  • Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A. W., Gordon, H. R., Muller, J.-P., Myneni, R. B., Sellers, P. J., Pinty, B., & Verstraete, M. M. (1998). Multi-angle imaging spectro radiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 36, 1072–1087. https://doi.org/10.1109/36.700992.

    Article  Google Scholar 

  • Elsasser, W. M., & Culbetson, M. F. (1960). Atmospheric radiation tables. Meteorological monographs published by the American Meteorological Society, Vol. 4(23), August 1960, Boston, MA (USA), 43 pp.

    Google Scholar 

  • France, W. L., & Dickey, F. P. (1955). Fine structure of the 2.7 micron carbon dioxide rotation-vibration band. The Journal of Chemical Physics, 23(3), 471–474. https://doi.org/ 10.1063/1.1742012.

    Article  Google Scholar 

  • Francis, J. A., Hunter, E., Key, J. R., & Wang, X. (2005). Clues to variability in Arctic minimum sea ice extent. Geophysical Research Letters, 32, L21501. https://doi.org/10.1029/2005GL024376.

    Article  Google Scholar 

  • Fröhlich, C., & Brusa, R. W. (1981). Solar radiation and its variation in time. Solar Physics, 74(1), 209–215. https://doi.org/10.1007/BF00151291.

    Article  Google Scholar 

  • Gerhard, S. L. (1932). The infrared absorption spectrum and the molecular structure of ozone. Physical Review, 42(5), 622–631.

    Article  Google Scholar 

  • Goldberg, L. (1954). Absorption spectrum of the atmosphere. In G. P. Kuiper (Ed.), The Earth as a planet (pp. 484–490). Chicago: Chicago University Press.

    Google Scholar 

  • Grassl, H. (1974). Influence of different absorbers in the window region on radiative cooling (and on surface temperature determination). Beiträge zur Physik der Atmosphäre (Contributions to Atmospheric Physics), 47(1), 1–13.

    Google Scholar 

  • Grenfell, T. C., & Maycut, G. A. (1977). The optical properties of ice and snow in the Arctic Basin. Journal of Glaciology, 18(78), 445–463. https://doi.org/10.1017/S0022143000021122.

    Article  Google Scholar 

  • Hall, T. C., Jr., & Blacet, F. E. (1952). Separation of the absorption spectrum of NO2 and N2O4 in range of 2400–5000 Å. The Journal of Chemical Physics, 20(11), 1745–1749. https://doi.org/10.1063/1.1700281.

    Article  Google Scholar 

  • Hänel, G., Adam, W., Bundke, U., Komguem, L., & Leiterer, U. (1999). Optical properties of boundary layer particles, columnar absorption and direct radiative forcing by particles in the solar spectral region. Journal of Aerosol Science, 30(1), S171–S172.

    Article  Google Scholar 

  • Hansen, J., Sato, M., & Ruedy, R. (1997). Radiative forcing and climate response. Journal of Geophysical Research, Atmospheres, 102(D6), 6831–6864. https://doi.org/10.1029/96JD03436.

    Article  Google Scholar 

  • Hansen, J. E., Sato, M., Lacis, A., Ruedy, R., Tegen, I., & Matthews, E. (1998). Climate forcings in the industrial era. Proceedings of the National Academy of Sciences (PNAS), USA, 95(22), 12753–12758. https://doi.org/10.1073/pnas.95.22.12753.

    Article  Google Scholar 

  • Herber, A., Thomason, L. W., Gernandt, H., Leiterer, U., Nagel, D., Schulz, K.-H., Kaptur, J., Albrecht, T., & Notholt, J. (2002). Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. Journal of Geophysical Research, Atmospheres, 107(D10, 4097), AAC 6-1–AAC 6-13. https://doi.org/10.1029/2001JD000536.

    Article  Google Scholar 

  • Hess, M., Koepke, P., & Schult, I. (1998). Optical properties of aerosols and clouds: The software package OPAC. Bulletin of the American Meteorological Society, Volume, 79(5), 831–844. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    Article  Google Scholar 

  • Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jefferson, A., Mefford, T., Quinn, P. K., Sharma, S., Ström, J., & Stohl, A. (2010). Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmospheric Chemistry and Physics, 10, 669–693. https://doi.org/10.5194/acp-10-669-2010.

    Article  Google Scholar 

  • Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET – A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1–16. S0034-4257(98)00031-5.

    Article  Google Scholar 

  • Jacquemoud, S. (1993). Inversion of the PROSPECT + SAIL canopy reflectance model from AVISIR equivalent spectra – Theorectical study. Remote Sensing of Environment, 44(2–3), 281–292.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., & Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kaplan, L. D., & Eggers, D. F. (1956). Intensity and line-width of the 15-micron CO2 band, determined by a curve-of-growth method. The Journal of Chemical Physics, 25(5), 876–883. https://doi.org/10.1063/1.1743135.

    Article  Google Scholar 

  • Kiehl, J., & Trenberth, K. (1997). Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), 197–206. https://doi.org/10.1175/1520-0477(1997) 078<0197:EAGMEB>2.0.CO;2.

    Article  Google Scholar 

  • Kim, S.-W., Jefferson, A., Yoon, S.-C., Dutton, E. G., Ogren, J. A., Valero, F. P. J., Kim, J., & Holben, B. N. (2005). Comparisons of aerosol optical depth and surface short-wave irradiance and their effect on the aerosol surface radiative forcing estimation. Journal of Geophysical Research, Atmospheres, 110, D07204. https://doi.org/10.1029/2004JD004989.

    Article  Google Scholar 

  • Kneizys, F. X., Abreu, L. W., Anderson, G. P., Chetwynd, J. H., Shettle, E. P., Berk, A., Bernstein, L. S., Robertson, D. C., Acharya, P., Rothman, L. S., Selby, J. E. A., Gallery, W. O., & Clough, S. A. (1996). The MODTRAN 2/3 report and LOWTRAN 7 model (L. W. Abreu, & G. P. Anderson, eds.). Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, MA., 261 pp.

    Google Scholar 

  • Koepke, P. (1984). Effective reflectance of oceanic whitecaps. Applied Optics, 23(11), 1816–1824. https://doi.org/10.1364/AO.23.001816.

    Article  Google Scholar 

  • Kokhanovsky, A. A. (2004). Spectral reflectance of whitecaps. Journal of Geophysical Research, Oceans, 109, C05021. https://doi.org/10.1029/2003JC002177.

    Article  Google Scholar 

  • Kokhanovsky, A. A., & Breon, F.-M. (2012). Validation of an analytical snow BRDF model using PARASOL multi-angular and multispectral observations. IEEE Geoscience and Remote Sensing Letters, 9(5), 928–932. https://doi.org/10.1109/LGRS.2012.2185775.

    Article  Google Scholar 

  • Kokhanovsky, A. A., & Zege, E. P. (2004). Scattering optics of snow. Applied Optics, 43(7), 1589–1602. https://doi.org/10.1364/AO.43.001589.

    Article  Google Scholar 

  • Kokhanovsky, A. A., Aoki, T., Hachikubo, A., Hori, M., & Zege, E. P. (2005). Reflective properties of natural snow: Approximate asymptotic theory versus in situ measurements. IEEE Transactions on Geosciences and Remote Sensing, 43(7), 1529–1535. https://doi.org/10.1109/TGRS.2005.848414.

    Article  Google Scholar 

  • Kokhanovsky, A. A., Rozanov, V. V., Aoki, T., Odermatt, D., Brockmann, C., Krüger, O., Bouvet, M., Drusch, M., & Hori, M. (2011). Sizing snow grains using backscattered solar light. International Journal of Remote Sensing, 32(22), 6975–7008. https://doi.org/10.1080/ 01431161.2011.560621.

    Article  Google Scholar 

  • Kondratyev, K. Y. (1969). Radiation in the atmosphere, Chapter 1: Radiant energy, the main concepts and definitions (pp. 1–48); Chapter 3: Radiation absorption in the atmosphere (pp. 85–139); Chapter 4: Scattering of radiation in the atmosphere (pp. 161–216). New York/London: Academic, 912 pp.

    Google Scholar 

  • Kopp, G., & Lean, J. L. (2011). A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38, L01706. https://doi.org/ 10.1029/2010GL045777.

    Article  Google Scholar 

  • Kostkowski, J. K., & Kaplan, L. D. (1957). Absolute intensities of the 721 and 742 cm−1 bands of CO2. The Journal of Chemical Physics, 26, 1252–1253. https://doi.org/10.1063/1.1743501.

    Article  Google Scholar 

  • Kratz, D. P., Gao, B.-C., & Kiehl, J. T. (1991). Study of the radiative effects of the 9.4- and 10.4-micron bands of carbon dioxide. Journal of Geophysical Research, Atmospheres, 96, D5, 9021–9026. https://doi.org/10.1029/89JD01004.

    Article  Google Scholar 

  • Kuusk, A. (1994). A multispectral canopy reflectance model. Remote Sensing of Environment, 50(2), 75–82. https://doi.org/10.1016/0034-4257(94)90035-3.

    Article  Google Scholar 

  • Kuusk, A. (1995). A fast, invertible canopy reflectance model. Remote Sensing of Environment, 51(3), 342–350. https://doi.org/10.1016/0034-4257(94)00059-V.

    Article  Google Scholar 

  • Lewis, P. (1995). On the implementation of linear kernel-driven BRDF models. In: Proceedings of the annual conference of Remote Sensing Society ‘95, “Remote Sensing in Action”, Southampton, UK, 11–14 September, 1995, pp. 333–340.

    Google Scholar 

  • Lewis, P., & Barnsley, M. J. (1994). Influence of the sky radiance distribution on various formulations of the Earth surface albedo. In Proceedings of the sixth international symposium on physical measurements and signatures in remote sensing, Val d’Isere (France), January 17–21, 1994, pp. 707–715.

    Google Scholar 

  • Lucht, W., Schaaf, C. B., & Strahler, A. H. (2000). An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38(2 Part 2), 977–998. https://doi.org/10.1109/36.841980.

    Article  Google Scholar 

  • Malkmus, W. (1963). Infrared emissivity of carbon dioxide (4.3-μ band). Journal of the Optical Society of America, 53(8), 951–961. https://doi.org/10.1364/JOSA.53.000951.

    Article  Google Scholar 

  • Migeotte, M., Niven, L., & Swensson, J. (1957). The solar spectrum from 2.8 to 23.7 Microns, final report – Phase a (Part 1.1.1, Air Force Cambridge Research Center, Contract No. AF 61(514)-432). Liège: Institute d’Astrophysique de l’Université de Liège.

    Google Scholar 

  • Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). Journal of Geophysical Research, Oceans, 93(C9), 10749–10768. https://doi.org/10.1029/JC093iC09p10749.

    Article  Google Scholar 

  • Muscari, G., Di Biagio, C., di Sarra, A., Cacciani, M., Ascanius, S. E., Bertagnolio, P. P., Cesaroni, C., de Zafra, R. L., Eriksen, P., Fiocco, G., Fiorucci, I., & Fuà, D. (2014). Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY. Annals of Geophysics, 57(3), SS0323. https://doi.org/10.4401/ag-6382.

    Article  Google Scholar 

  • Nakamura, N., & Oort, A. H. (1988). Atmospheric heat budgets of the polar regions. Journal of Geophysical Research, Atmospheres, 93(D8), 9510–9524. https://doi.org/10.1029/ JD093iD08p09510.

    Article  Google Scholar 

  • NASA (2016), The NASA Earth’s energy budget poster. See: https://science-edu.larc.nasa.gov/energy_budget/

  • Nielsen, A. H., & Nielsen, H. H. (1935). The infrared absorption bands of methane. Physical Review, 48(11), 864–867. https://doi.org/10.1103/PhysRev.48.864.

    Article  Google Scholar 

  • Nilson, T., & Kuusk, A. (1989). A reflectance model for the homogeneous plant canopy and its inversion. Remote Sensing of Environment, 27, 157–167. https://doi.org/10.1016/ 0034-4257(89)90015-1.

    Article  Google Scholar 

  • Ohmura, A. (2012). Present status and variations in the Arctic energy balance. Polar Science, 6, 5–13. https://doi.org/10.1016/j.polar.2012.03.003.

    Article  Google Scholar 

  • Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., & Taira, R. (2007). The JRA-25 reanalysis. Journal of the Meteorological Society of Japan, Series II, 85(3), 369–432. https://doi.org/10.2151/jmsj.85.369.

    Article  Google Scholar 

  • Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J., & Comiso, J. C. (1999). Arctic Sea ice extents, areas, and trends, 1978–1996. Journal of Geophysical Research, Oceans, 104(C9), 20837–20856. https://doi.org/10.1029/1999JC900082.

    Article  Google Scholar 

  • Persson, P. O., Fairall, C. W., Andreas, E. L., Guest, P. S., & Perovich, D. K. (2002). Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. Journal of Geophysical Research, Oceans, 107, C10. https://doi.org/10.1029/2000JC000705.

    Article  Google Scholar 

  • Porter, D. F., Cassano, J. J., Serreze, M. C., & Kindig, D. N. (2010). New estimates of the large-scale Arctic atmospheric energy budget. Journal of Geophysical Research, Atmospheres, 115, D08108. https://doi.org/10.1029/2009JD012653.

    Article  Google Scholar 

  • Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A. D., Coakley, J. A., Collins, W. D., Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben, B., Howell, S., Hudson, J., Jayaraman, A., Kiehl, J. T., Krishnamurti, T. N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J. A., Podgorny, I. A., Prather, K., Priestley, K., Prospero, J. M., Quinn, P. K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S. K., Shaw, G. E., Sheridan, P., & Valero, F. P. J. (2001). Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research, Atmospheres, 106(D22), 28371–28398. https://doi.org/10.1029/2001JD900133.

    Article  Google Scholar 

  • Raschke, E., & Ohmura, A. (2005). Radiation budget of the climate system (Chapter 4). In: M. Hantel (Ed.), Observed global climate. Group V: Geophysics, Landolt-Börnstein Numerical and Functional Relationships in Science and Technology (New series, Vol. 6, pp. 4.1–4.42). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Rex, M., Dethloff, K., Handorf, D., Herber, A., Lehmann, R., Neuber, R., Notholt, J., Rinke, A., von der Gathen, P., Weisheim, A., & Gernandt, H. (2000). Arctic and Antarctic ozone layer observations: Chemical and dynamical aspects of variability and long-term changes in the polar stratosphere. Polar Research, 19(2), 193–204. https://doi.org/10.1111/j.1751-8369.2000.tb00343.x.

    Article  Google Scholar 

  • Ricchiazzi, P., Yang, S., Gautier, C., & Sowle, D. (1998). SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bulletin of the American Meteorological Society, 79(10), 2101–2114. https://doi.org/10.1175/ 1520-0477(1998)079<2101:SARATS>2.0.CO;2.

    Article  Google Scholar 

  • Ricchiazzi, P., O’Hirok, W., & Gautier, C. (2005). The effect of non-lambertian surface reflectance on aerosol radiative forcing. Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March, 14–18. 8 pp.

    Google Scholar 

  • Rogers, A. N., Bromwich, D. H., Sinclair, E. N., & Cullather, R. I. (2001). The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part II: Interannual variability. Journal of Climate, 14, 2414–2429. https://doi.org/10.1175/1520-0442(2001) 014<2414:TAHCOT>2.0.CO;2.

    Article  Google Scholar 

  • Román, M. O., Schaaf, C. B., Lewis, P., Gao, F., Anderson, G. P., Privette, J. L., Strahler, A. H., Woodcock, C. E., & Barnsley, M. (2010). Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sensing of Environment, 114(4), 738–760. https://doi.org/10.1016/ j.rse.2009.11.014.

    Article  Google Scholar 

  • Satheesh, S. K., & Ramanathan, V. (2000). Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature, 405, 60–63. https://doi.org/10.1038/35011039.

    Article  Google Scholar 

  • Serreze, M. C., & Hurst, C. M. (2000). Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. Journal of Climate, 13, 182–201. https://doi.org/10.1175/ 1520-0442(2000)013<0182:ROMAPF>2.0.CO;2.

    Article  Google Scholar 

  • Serreze, M. C., Key, J. R., Box, J. E., Maslanik, J. A., & Steffen, K. (1998). A new monthly climatology of global radiation for the Arctic and comparisons with NCEP-NCAR reanalysis and ISCCP-C2 fields. Journal of Climate, 11, 121–136. https://doi.org/10.1175/ 1520-0442(1998)011<0121:ANMCOG>2.0.CO;2.

    Article  Google Scholar 

  • Serreze, M. C., Lynch, A. H., & Clark, M. P. (2001). The Arctic frontal zone as seen in the NCEP/NCAR reanalysis. Journal of Climate, 14, 1550–1567. https://doi.org/10.1175/ 1520-0442(2001)014<1550:TAFZAS>2.0.CO;2.

    Article  Google Scholar 

  • Serreze, M. C., Bromwich, D. H., Clark, M. P., Etringer, A. J., Zhang, T., & Lammers, R. (2003). The large-scale hydroclimatology of the terrestrial Arctic drainage. Journal of Geophysical Research, 108(D2), 8160. https://doi.org/10.1029/2001JD000919.

    Article  Google Scholar 

  • Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M., Zhang, J., & Trenberth, K. E. (2007). The large-scale energy budget of the Arctic. Journal of Geophysical Research, Atmospheres, 112, D11122. https://doi.org/10.1029/2006JD008230.

    Article  Google Scholar 

  • Shaw, G. E. (1976). Nitrogen dioxide - optical absorption in the visible, Journal of Geophysical Research. Oceans and Atmospheres, 81, 5791–5792. https://doi.org/10.1029/ JC081i033p05791.

    Article  Google Scholar 

  • Shaw, G. E. (1995). The arctic haze phenomenon. Bulletin of the American Meteorological Society, 76, 2403–2413. https://doi.org/10.1175/1520-0477(1995)076<2403:TAHP>2.0.CO;2.

    Article  Google Scholar 

  • Smith and Bess. See at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.597.8918

  • Smith, G. L., & Bess, T. D. Arctic radiation budget changes. Available at http://citeseerx.ist. psu.edu/viewdoc/summary?doi=10.1.1.597.8918

  • Stone, R. S. (2002). Monitoring aerosol optical depth at Barrow, Alaska, and South Pole. Historical overview, recent results and future goals. SIF Conference Proceedings, 80, 123–144.

    Google Scholar 

  • Stone, R. S., Anderson, G. P., Andrews, E., Dutton, E. G., Shettle, E. P., & Berk, A. (2007). Incursions and radiative impact of Asian dust in northern Alaska. Geophysical Research Letters, 34, L14815. https://doi.org/10.1029/2007GL029878.

    Article  Google Scholar 

  • Stroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic Sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501. https://doi.org/10.1029/2007GL029703.

    Article  Google Scholar 

  • Su, F., Adam, J. C., Trenberth, K. E., & Lettenmaier, D. P. (2006). Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. Journal of Geophysical Research, Atmospheres, Volume, 111, D05110. https://doi.org/10.1029/ 2005JD006387.

    Article  Google Scholar 

  • Thekaekara, M. P. (1973). Solar energy outside the Earth’s atmosphere. Solar Energy, 14(2), 109–127. https://doi.org/10.1016/0038-092X(73)90028-5.

    Article  Google Scholar 

  • Tomasi, C., & Petkov, B. H. (2014). Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres. Journal of Geophysical Research, Atmospheres, 119(3), 1363–1385. https://doi.org/10.1002/2013JD020600.

    Article  Google Scholar 

  • Tomasi, C., & Trombetti, F. (1985). Absorption and emission by minor atmospheric gases in the radiation balance of the earth. La Rivista del Nuovo Cimento, Vol. 8, Series 3, no. 2, 89 pp. (Monograph).

    Google Scholar 

  • Tomasi, C., Guzzi, R., & Vittori, O. (1974). A search for the e-effect in the atmospheric water vapor continuum. Journal of the Atmospheric Sciences, 31(1), 255–260. https://doi.org/ 10.1175/1520-0469(1974)031<0255:ASFTEI>2.0.CO;2.

    Article  Google Scholar 

  • Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber, A., Treffeisen, R., Stone, R. S., Andrews, E., Sharma, S., Radionov, V., von Hoyningen-Huene, W., Stebel, K., Hansen, G. H., Myhre, C. L., Wehrli, C., Aaltonen, V., Lihavainen, H., Virkkula, A., Hillamo, R., Ström, J., Toledano, C., Cachorro, V., Ortiz, P., de Frutos, A., Blindheim, S., Frioud, M., Gausa, M., Zielinski, T., Petelski, T., & Yamanouchi, T. (2007). Aerosols in polar regions: A historical overview based on optical depth and in situ observations. Journal of Geophysical Research, Atmospheres, 12, D16205. https://doi.org/10.1029/2007JD008432.

    Article  Google Scholar 

  • Tomasi, C., Petkov, B., Stone, R. S., Benedetti, E., Vitale, V., Lupi, A., Mazzola, M., Lanconelli, C., Herber, A., & von Hoyningen-Huene, W. (2010). Characterizing polar atmospheres and their effect on Rayleigh-scattering optical depth. Journal of Geophysical Research, Atmospheres, 115, D2. https://doi.org/10.10129/2009JD012852.

    Article  Google Scholar 

  • Tomasi, C., Petkov, B., Dinelli, B. M., Castelli, E., Arnone, E., & Papandrea, E. (2011). Monthly mean vertical profiles of pressure, temperature, and water vapour volume mixing ratio in the polar stratosphere and low mesosphere from a multi-year set of MIPAS-ENVISAT limb-scanning measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 73(16), 2237–2271. https://doi.org/10.1016/j.jastp.2011.06.018.

    Article  Google Scholar 

  • Tomasi, C., Lupi, A., Mazzola, M., Stone, R. S., Dutton, E. G., Herber, A., Radionov, V. F., Holben, B. N., Sorokin, M. G., Sakerin, S. M., Terpugova, S. A., Sobolesky, P. S., Lanconelli, C., Petkov, B. H., Busetto, M., & Vitale, V. (2012). An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year. Atmospheric Environment, 52, C, 29–47. https://doi.org/10.1016/j.atmosenv.2012.02.055.

    Article  Google Scholar 

  • Tomasi, C., Lanconelli, C., Lupi, A., & Mazzola, M. (2013). Dependence of direct aerosol radiative forcing on the optical properties of atmospheric aerosol and underlying surface (Chapter 11). In A. A. Kokhanovsky (Ed.), Light scattering reviews, volume 8, radiative transfer and light scattering (pp. 505–626). Berlin: Springer Praxis Books/Environmental Sciences. https://doi.org/10.1007/978-3-642-32106-1.

    Chapter  Google Scholar 

  • Tomasi, C., Lanconelli, C., Lupi, A., & Mazzola, M. (2014). Diurnally averaged direct aerosol-induced radiative forcing from cloud-free sky field measurements performed during seven regional experiments (Chapter 8). In A. A. Kokhanovsky (Ed.), Light scattering reviews, volume 9, Radiative Transfer and Light Scattering (pp. 297–425). Berlin: Springer Praxis Books/Environmental Sciences. https://doi.org/10.1007/978-3-642-37985-7_8.

    Chapter  Google Scholar 

  • Tomasi, C., Kokhanovsky, A. A., Lupi, A., Ritter, C., Smirnov, A., O’Neill, N. T., Stone, R. S., Holben, B. N., Nyeki, S., Wehrli, C., Stohl, A., Mazzola, M., Lanconelli, C., Vitale, V., Stebel, K., Aaltonen, V., de Leeuw, G., Rodriguez, E., Herber, A. B., Radionov, V. F., Zielinski, T., Petelski, T., Sakerin, S. M., Kabanov, D. M., Xue, Y., Mei, L., Istomina, L., Wagener, R., McArthur, B., Sobolewski, P. S., Kivi, R., Courcoux, Y., Larouche, P., Broccardo, S., & Piketh, S. J. (2015). Aerosol remote sensing in polar regions. Earth-Science Reviews, 140, 108–157. https://doi.org/10.1016/j.earscirev.2014.11.001.

    Article  Google Scholar 

  • Trenberth, K. E. (1997). Using atmospheric budgets as a constraint on surface fluxes. Journal of Climate, 10, 2796–2809. https://doi.org/10.1175/1520-0442(1997)010<2796: UABAAC>2.0.CO;2.

    Article  Google Scholar 

  • Uppala, S. M., Allberg, P. W. K., Simmons, A. J., Andrae, U., Dacostabechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Vandeberg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Olm, E. H., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., & Woollen, J. (2005). The ERA-40 reanalysis. Quarterly Journal of the Royal Meteorological Society, 131(612), 2961–3012. https://doi.org/10.1256/qj.04.176.

    Article  Google Scholar 

  • Vermote, E. F., Tanré, D., Deuzé, J. L., Herman, M., & Morcrette, J.-J. (1997). Second simulation of the satellite signal in the solar spectrum (6S): An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686. https://doi.org/10.1109/36.581987.

    Article  Google Scholar 

  • Vogler, C., Brönnimann, S., & Hansen, G. (2006). Re-evaluation of the 1950–1962 total ozone record from Longyearbyen, Svalbard. Atmospheric Chemistry and Physics, 6(12), 4763–4773. https://doi.org/10.5194/acp-6-4763-2006.

    Article  Google Scholar 

  • Wanner, W., Strahler, A. H., Hu, B., Lewis, P., Muller, J.-P., Li, X., Schaaf, C. L. B., & Barnsley, M. J. (1997). Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. Journal of Geophysical Research, Atmospheres, 102(D14), 17143–17161. https://doi.org/10.1029/96JD03295.

    Article  Google Scholar 

  • Warren, S. G. (1984). Optical constants of ice from the ultraviolet to the microwave. Applied Optics, 23(8), 1206–1225. https://doi.org/10.1364/AO.23.001206.

    Article  Google Scholar 

  • Warren, S. G., & Wiscombe, W. J. (1980). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37(12), 2734–2745. https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.

    Article  Google Scholar 

  • Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., III, Louis Smith, G., & Cooper, J. E. (1996). Clouds and the Earth’s radiant energy system (CERES): An earth observing system experiment. Bulletin of the American Meteorological Society, 77(5), 853–868. https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    Article  Google Scholar 

  • Wielicki, B. A., Barkstrom, B. R., Baum, B. A., Charlock, T. P., Green, R. N., Kratz, D. P., Lee, R. B., III, Minnis, P., Smith, G. L., Wong, T., Young, D. F., Cess, R. D., Coakley, J. A., Jr., Crommelynck, D. H., Donner, L., Kandel, R., King, M. D., Miller, J., Ramanathan, V., Randall, D. A., Stowe, L. L., & Welch, R. M. (1998). Clouds and the Earth’s Radiant Energy System (CERES): Algorithm overview. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1127–1141. https://doi.org/10.1109/36.701020.

    Article  Google Scholar 

  • Wiscombe, W. J., & Warren, S. G. (1980). A model for the spectral albedo of snow. I: Pure snow. Journal of the Atmospheric Sciences, 37(12), 2712–2733. https://doi.org/10.1175/ 1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.

    Article  Google Scholar 

  • Xu, J., Bergin, M. H., Greenwald, R., & Russell, P. B. (2003). Direct aerosol radiative forcing in the Yangtze delta region of China: Observation and model estimation. Journal of Geophysical Research, Atmospheres, 108, 4060. https://doi.org/10.1029/2002JD002550.

    Article  Google Scholar 

  • Yamamoto, G., & Sasamori, T. (1958). Calculation of the absorption of the 15 micron carbon dioxide band. Scientific Report Töhoku University, Series 5, Geophysics, 10, 37–57.

    Google Scholar 

  • Yang, Y., Wang, H., Smith, S. J., Easter, R. C., & Rasch, P. J. (2018). Sulfate aerosol in the Arctic: Source attribution and radiative forcing. Journal of Geophysical Research, Atmospheres, 123, 1899–1918. https://doi.org/10.1002/2017JD027298.

    Article  Google Scholar 

  • Zhao, T. X.-P., Yu, H., Laszlo, I., Chin, M., & Conant, W. C. (2008). Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(7), 1162–1186. https://doi.org/10.1016/j.jqsrt.2007.10.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Mazzola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomasi, C., Petkov, B.H., Lupi, A., Mazzola, M., Lanconelli, C., Gultepe, I. (2020). Radiation in the Arctic Atmosphere and Atmosphere – Cryosphere Feedbacks. In: Kokhanovsky, A., Tomasi, C. (eds) Physics and Chemistry of the Arctic Atmosphere. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-33566-3_10

Download citation

Publish with us

Policies and ethics