Skip to main content

Dynamical Processes in the Arctic Atmosphere

  • Chapter
  • First Online:

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

The scales of dynamical processes in the Arctic atmosphere range from turbulence in the atmospheric boundary layer (ABL) via interactive mesoscale processes, such as orographic flows and Polar lows, to synoptic-scale cyclones, and further to hemispherical-scale circulations characterized by the Polar front jet stream and planetary waves. Specific boundary conditions for tropospheric dynamics in the Arctic include (a) sea ice and snow, which strongly affect the surface energy budget, (b) large transports of heat and moisture from lower-latitudes, and (c) the wintertime stratospheric Polar vortex, which has a large impact on tropospheric large-scale circulation and synoptic-scale cyclones. Knowledge on dynamics of the Arctic atmosphere is advancing but, compared to mid- and low-latitudes, still limited due to lack of process-level observations from the Arctic. The dynamics of the Arctic atmosphere poses a challenge for numerical weather prediction (NWP) and climate models, in particular in the case of ABL, orographic flows, Polar lows, and troposphere-stratosphere coupling. More research is also needed to better understand how the atmospheric dynamics affects and is affected by climate warming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aizawa, T., Tanaka, H. L., & Satoh, M. (2014). Rapid development of arctic cyclone in June 2008 simulated by the cloud resolving global model NICAM. Meteorology and Atmospheric Physics, 126, 105–117. https://doi.org/10.1007/s00703-013-0272-6.

    Article  Google Scholar 

  • Aizawa, T., & Tanaka, H. L. (2016). Axisymmetric structure of the long lasting summer Arctic cyclones. Polar Science. https://doi.org/10.1016/j.polar.2016.02.002.

    Article  Google Scholar 

  • Ambaum, M. H. P., Hoskins, B. J., & Stephenson, V. B. (2001). Arctic oscillation or North Atlantic oscillation? Journal of Climate, 14, 3495–3507.

    Article  Google Scholar 

  • Andreas, E. L. (1980). Estimation of heat and mass fluxes over Arctic leads. Monthly Weather Review, 108, 2057–2063.

    Article  Google Scholar 

  • Andreas, E. L., Claffy, K. J., & Makshtas, A. P. (2000). Low-level atmospheric jets and inversions over the western Weddell Sea. Boundary-Layer Meteorology, 97(3), 459–486.

    Article  Google Scholar 

  • Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C. W., Guest, P. S., & Jordan, R. E. (2010a). Parameterising turbulent exchange over summer sea ice and the marginal ice zone. Quarterly journal of the royal meteorology. Society, 136B, 927–943.

    Google Scholar 

  • Andreas, E. L., Persson, P. O. G., Jordan, R. E., Horst, T. W., Guest, P. S., Grachev, A. A., & Fairall, C. W. (2010b). Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11, 87–104.

    Article  Google Scholar 

  • Andrews, D. G., Holton, J. R., & Leovy, C. B. (1987). Middle atmosphere dynamics. Academic Press. 489 pp.

    Google Scholar 

  • Atlaskin, E., & Vihma, T. (2012). Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Quarterly Journal of the Royal Meteorological Society, 138, 1440–1451. https://doi.org/10.1002/qj.1885.

    Article  Google Scholar 

  • Baldwin, M. P., & Dunkerton, T. J. (1999). Propagation of the Arctic oscillation from the stratosphere to the troposphere. Journal of Geophysical Research, 104, 30 937–30 946.

    Article  Google Scholar 

  • Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., & Jones, D. B. A. (2001). The quasi-biennial oscillation. Reviews of Geophysics, 39(2), 179–229.

    Article  Google Scholar 

  • Barrier, N., Cassou, C., Deshayes, J., & Treguier, A. M. (2014). Response of North Atlantic Ocean circulation to atmospheric weather regimes. Journal of Physical Oceanography, 44(1), 179–201.

    Article  Google Scholar 

  • Belcher, S. E., & Hunt, J. C. R. (1998). Turbulent flow over hills and waves. Annual Review of Fluid Mechanics, 30, 507–538. https://doi.org/10.1146/annurev.fluid.30.1.507.

    Article  Google Scholar 

  • Berger, E., & Wille, R. (1972). Periodic flow phenomena. Annual Review of Fluid Mechanics, 4, 313–340. https://doi.org/10.1146/annurev.fl.04.010172.001525.

    Article  Google Scholar 

  • Blechschmidt, A. M. (2008). A 2-year climatology of polar low events over the Nordic seas from satellite remote sensing. Geophysical Research Letters, 35(L09), 815. https://doi.org/10.1029/2008GL033706.

    Article  Google Scholar 

  • Bluestein, H. B. (1993). Synoptic-dynamic meteorology in midlatitudes, observations and theory of weather systems (Vol. II). Oxford University Press. 594 pp.

    Google Scholar 

  • Blumen, W. (1990). Mountain meteorology. In Atmospheric processes over complex terrain (pp. 1–4). Boston, MA: American Meteorological Society. http://link.springer.com/10.1007/978-1-935704-25-6_1.

    Google Scholar 

  • Bond, N. A., & Shapiro, M. (1991). Polar lows over the Gulf of Alaska in conditions of reverse shear. Monthly Weather Review, 119, 551–572.

    Article  Google Scholar 

  • Bourassa, M. A., Gille, S. T., Bitz, C., Carlson, D., Cerovecki, I., Clayson, C. A., Cronin, M. F., Drennan, W. M., Fairall, C. W., Hofmann, R. N., Magnusdottir, G., Pinker, R. T., Renfrew, I. A., Serreze, M., Speer, K., Talley, L. D., & Wick, G. A. (2013). High-Latitude Ocean and sea ice surface fluxes: Challenges for climate research. Bulletin of the American Meteorological Society, 403–423.

    Google Scholar 

  • Bracegirdle, T. J., & Gray, S. L. (2008). An objective climatology of the dynamical forcing of polar lows in the Nordic seas. International Journal of Climatology, 28, 1903–1919.

    Article  Google Scholar 

  • Bromwich, D. H., & Coauthors. (2001). Mesoscale modeling of katabatic winds over Greenland with the polar MM5∗. Monthly Weather Review, 129, 2290–2309. https://doi.org/10.1175/1520-0493(2001)129<2290:MMOKWO>2.0.CO;2.

    Article  Google Scholar 

  • Bromwich, D. H., & Coauthors. (2017). The arctic system reanalysis version 2. Bulletin of the American Meteorological Society., BAMS-D-16-0215.1. https://doi.org/10.1175/BAMS-D-16-0215.1.

    Article  Google Scholar 

  • Brümmer, B., & Thiemann, S. (2002). The atmospheric boundary layer in an Arctic wintertime on-ice flow. Boundary-Layer Meteorology, 104, 53–72.

    Article  Google Scholar 

  • Brümmer, B., Müller, G., & Noer, G. (2009). A polar low pair over the Norwegian sea. Monthly Weather Review, 137(8), 2559–2575.

    Article  Google Scholar 

  • Bueh, C., & Nakamura, H. (2007). Scandinavian pattern and its climatic impact. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(629), 2117–2131.

    Article  Google Scholar 

  • Burk, S. D., Fett, R. W., & Englebretson, R. E. (1997). Numerical simulation of cloud plumes emanating from Arctic leads. Journal of Geophysical Research, 102. https://doi.org/10.1029/97JD00339.

    Article  Google Scholar 

  • Businger, S. (1985). The synoptic climatology of polar low outbreaks. Tellus, 37A, 419–432.

    Article  Google Scholar 

  • Businger, S. (1987). The synoptic climatology of polar low outbreaks over the Gulf of Alaska and the Bering Sea. Tellus, 39A, 307–325.

    Article  Google Scholar 

  • Butler, A. H., & Polvani, L. M. (2011). El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophysical Research Letters, 38(13).

    Google Scholar 

  • Byrkjedal, Ø., Esau, I. N., & Kvamstø, N. G. (2007). Sensitivity of simulated wintertime Arctic atmosphere to vertical resolution in the ARPEGE/IFS model. Climate Dynamics, 30, 687–701. https://doi.org/10.1007/s00382-007-0316-z.

    Article  Google Scholar 

  • Cagnazzo, C., & Manzini, E. (2009). Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. Journal of Climate, 22(5), 1223–1238.

    Article  Google Scholar 

  • Castellani, G., Lüpkes, C., Hendricks, S., & Gerdes, R. (2014). Variability of Arctic Sea-ice topography and its impact on the atmospheric surface drag. Journal of Geophysical Research, Oceans, 119, 6743–6762. https://doi.org/10.1002/2013JC009712.

    Article  Google Scholar 

  • Charney, J. G., & Drazin, P. G. (1961). Propagation of planetaryscale disturbances from the lower into the upper atmosphere. Journal of Geophysical Research, 66, 83–109.

    Article  Google Scholar 

  • Chechin, D., & Lüpkes, C. (2017). Boundary-layer development and low-level Baroclinicity during high-latitude cold-air outbreaks: A simple model. Boundary-Layer Meteorology, 162(91–116), 1–26. https://doi.org/10.1007/s10546-016-0193-2.

    Article  Google Scholar 

  • Chechin, D. G., Lüpkes, C., Repina, I. A., & Gryanik, V. M. (2013). Idealized dry quasi 2-D mesoscale simulations of cold-air outbreaks over the marginal sea ice zone with fine and coarse resolution. Journal of Geophysical Research: Atmospheres, 118(16), 8787–8813. https://doi.org/10.1002/jgrd.50679.

    Article  Google Scholar 

  • Chen, F., & von Storch, H. (2013). Trends and variability of North Pacific polar lows. Advances in Meteorology. https://doi.org/10.1155/2013/170387.

    Google Scholar 

  • Claud, C., Heinemann, G., Raustein, E., & McMurdie, L. (2004). Polar low ‘le Cygne’: Satellite observations and numerical simulations. Quarterly Journal of the Royal Meteorological Society, 130, 1075–1102. https://doi.org/10.1256/qj.03.72.

    Article  Google Scholar 

  • Claud, C., Duchiron, B., & Terray, P. (2007). Associations between large-scale atmospheric circulation and polar low developments over the North Atlantic curing winter. Journal of Geophysical Research, 112. https://doi.org/10.1029/2006JD008251.

  • Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., & Jones, J. (2014). Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627.

    Article  Google Scholar 

  • Condron, A., & Bigg, G. R. (2006). Polar mesoscale cyclones in the Northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery. Monthly Weather Review, 134, 1518–1533.

    Article  Google Scholar 

  • Condron, A., Bigg, G. R., & Renfrew, I. A. (2008). Modeling the impact of polar mesocyclones on ocean circulation. Journal of Geophysical Research: Oceans, 113(C10).

    Google Scholar 

  • Condron, A., & Renfrew, I. (2012). The impact of polar mesoscale storms on Northeast Atlantic Ocean circulation. Nature Geoscience.

    Google Scholar 

  • Coumou, D., Kornhuber, K., Lehmann, J., & Petoukhov, V. (2017). Weakened flow, persistent circulation, and prolonged weather extremes in boreal summer. Climate Extremes: Patterns and Mechanisms, 61–73.

    Google Scholar 

  • Craig, G. C., & Gray, S. L. (1996). CISK or WISHE as the mechanism for tropical cyclone intensification. Journal of the Atmospheric Sciences, 53, 3528–3540.

    Article  Google Scholar 

  • Cuxart, J., Holtslag, A. A. M., Beare, R., Beljaars, A., Cheng, A., Conangla, L., Ek, M., Freedman, F., Hamdi, R., Kerstein, A., Kitagawa, H., Lenderik, G., Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld, G.-J., Svensson, G., Taylor, P., Wunsch, S., Weng, W., & Xu, K.-M. (2006). Single-column intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorology, 118, 273–303.

    Article  Google Scholar 

  • Davini, P., Cagnazzo, C., Neale, R., & Tribbia, J. (2012). Coupling between Greenland blocking and the North Atlantic oscillation pattern. Geophysical Research Letters, 39, L14701. https://doi.org/10.1029/2012GL052315.

    Article  Google Scholar 

  • Davis, C. A., & Emanuel, K. A. (1991). Potential corticity diagnostics of cyclogenesis. Monthly Weather Review, 119, 1929–1953. https://doi.org/10.1175/1520-0493(1991)119 <1929:PVDOC>2.0.CO;2.

    Article  Google Scholar 

  • de Boer, G., Shupe, M. D., Caldwell, P. M., et al. (2013). Near-surface meteorology during the Arctic summer Cloud Ocean study (ASCOS): Evaluation of reanalyses and global climate models. Atmospheric Chemistry and Physics, 14, 427–445.

    Article  Google Scholar 

  • Dee, D. P., & Coauthors. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Derbyshire, S. (1999). Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Boundary-Layer Meteorology, 90, 297–325. https://doi.org/10.1023/ A:1001710014316.

    Article  Google Scholar 

  • Deser, C., Sun, L., Tomas, R. A., & Screen, J. (2016). Does ocean coupling matter for the northern extratropical response to projected Arctic Sea ice loss? Geophysical Research Letters, 43(5), 2149–2157.

    Article  Google Scholar 

  • Deveson, A. C. L., Browning, K. A., & Hewson, T. D. (2002). A classification of FASTEX cyclones using height-attributable quasi-geostrophic vertical motion diagnostic. Quarterly Journal of the Royal Meteorological Society, 128, 93–117.

    Article  Google Scholar 

  • Douglas, M. W., Shapiro, M., Fedor, L., & Saukkonen, L. (1995). Research aircraft observatons of a polar low at the East Greenland ice edge. Monthly Weather Review, 123, 5–15.

    Article  Google Scholar 

  • Doyle, J. D., & Shapiro, M. A. (1999). Flow response to large-scale topography: The Greenland tip jet. Tellus A: Dynamic Meteorology and Oceanography, 51, 728–748. https://doi.org/10.3402/tellusa.v51i5.14471.

    Article  Google Scholar 

  • Doyle, J. D., Shapiro, M. A., Jiang, Q., Bartels, D. L., Doyle, J. D., Shapiro, M. A., Jiang, Q., & Bartels, D. L. (2005). Large-Amplitude Mountain wave breaking over Greenland. Journal of the Atmospheric Sciences, 62, 3106–3126. https://doi.org/10.1175/JAS3528.1.

    Article  Google Scholar 

  • Duncan, C. (1978). Baroclinic instability in a reversed shear flow. Meteorite Magazine, 107, 17–23.

    Google Scholar 

  • DuVivier, A. K., Cassano, J. J., Greco, S., Emmitt, G. D., DuVivier, A. K., Cassano, J. J., Greco, S., & Emmitt, G. D. (2017). A case study of observed and modeled barrier flow in the Denmark Strait in may 2015. Monthly Weather Review, 145, 2385–2404. https://doi.org/10.1175/MWR-D-16-0386.1.

    Article  Google Scholar 

  • Emanuel, K. A., & Rotunno, R. (1989). Polar lows as Arctic hurricanes. Tellus, 41A, 1–17.

    Article  Google Scholar 

  • Edmon, H. J., Hoskins, B. J., & McIntyre, M. E. (1980). Eliassen–Palm cross-sections for the troposphere. Journal of the Atmospheric Sciences, 37, 2600–2616. Corrigendum, 38, 1115.

    Article  Google Scholar 

  • Ese, T., Kanestrom, I., & Pedersen, K. (1988). Climotology of polar lows over the Norwegian and Barents seas. Tellus, 40A, 248–255.

    Article  Google Scholar 

  • Fang, Z. F. (2004). Statistical relationship between the northern hemisphere sea ice and atmospheric circulation during wintertime. In Observation, theory and modeling of atmospheric variability: Selected Papers of Nanjing Institute of Meteorology Alumni in Commemoration of Professor Jijia Zhang (pp. 131–141).

    Chapter  Google Scholar 

  • Foldvik, A. (1962). Two-dimensional mountain waves – A method for the rapid computation of lee wavelengths and vertical velocities. Quarterly Journal of the Royal Meteorological Society, 88, 271–285. https://doi.org/10.1002/qj.49708837707.

    Article  Google Scholar 

  • Forbes, G. S., & Lottes, W. D. (1985). Classification of mesoscale vortices in polar airstreams and the influence of the large-scale environment on their evolutions. Tellus, 37A, 132–155.

    Article  Google Scholar 

  • Francis, J., & Skific, N. (2015). Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045), 20140170.

    Article  Google Scholar 

  • Francis, J. A., & Vavrus, S. J. (2015). Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10(1), 014005.

    Article  Google Scholar 

  • Føre, I., Kristjansson, J. E., Kolstad, E. W., Bracegirdle, T. J., Saetre, Ø., & Røsting, B. (2012). A ‘hurricane-like’ polar low fuelled by sensible heat flux: High-resolution numerical simulations. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.1876.

    Article  Google Scholar 

  • Føre, I., Kristjansson, J. E., Saetre, Ø., Breivik, Ø., Røsting, B., & Shapiro, M. (2011). The full life cycle of a polar low over the Norwegian sea observed by three research aircraft flights. Quarterly Journal of the Royal Meteorological Society, 137, 1659–1673.

    Article  Google Scholar 

  • Furtado, J. C., Cohen, J. L., & Tziperman, E. (2016). The combined influences of autumnal snow and sea ice on northern hemisphere winters. Geophysical Research Letters, 43, 3478–3485.

    Article  Google Scholar 

  • Garfinkel, C. I., Hartmann, D. L., & Sassi, F. (2010). Tropospheric precursors of anomalous northern hemisphere stratospheric polar vortices. Journal of Climate, 23, 3282–3299. https://doi.org/10.1175/2010JCLI3010.1.

    Article  Google Scholar 

  • Garfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C., & Lee, S. (2012a). Observed Connection between Stratospheric Sudden Warmings and the Madden-Julian Oscillation. Geophysical Research Letters, 39. https://doi.org/10.1029/2012GL053144.

  • Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., & Waugh, D. W. (2012b). Does the Holton-Tan Mechanism Explain How the Quasi-Biennial Oscillation Modulates the Arctic Polar Vortex? Journal of the Atmospheric Sciences, 69. https://doi.org/10.1175/JAS-D-11-0209.1.

    Article  Google Scholar 

  • Garratt, J. R. (1992). The atmospheric boundary layer. Cambridge University Press. 316 p.

    Google Scholar 

  • Gill, A. E. (1982). Atmosphere-ocean dynamics. Academic Press. 662 pp.

    Google Scholar 

  • Gong, D. Y., & Ho, C.-H. (2002). The Siberian high and climate change over middle to high latitude Asia. Theoretical and Applied Climatology, 72, 1–9.

    Article  Google Scholar 

  • Gong, T., & Luo, D. (2017). Ural blocking as an amplifier of the Arctic Sea ice decline in winter. Journal of Climate, 30, 2639–2654.

    Article  Google Scholar 

  • Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., & Persson, P. O. G. (2007). SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorology, 124, 315–333.

    Article  Google Scholar 

  • Grachev, A. A., Persson, P. O. G., Uttal, T., Akish, E. A., Cox, C. J., Morris, S. M., Fairall, C. W., Stone, R. S., Lesins, G., Makshtas, A. P., & Repina, I. A. (2017). Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites. Climate Dynamics. https://doi.org/10.1007/s00382-017-3983-4.

    Article  Google Scholar 

  • Gray, L. J., et al. (2010). Solar influences on climate. Reviews of Geophysics, 48, RG4001. https://doi.org/10.1029/2009RG000282.

    Article  Google Scholar 

  • Grønås, S., & Kvamstø, N. G. (1995). Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows. Tellus, 47A, 797–814.

    Article  Google Scholar 

  • Gryanik, V. and Lüpkes, C. (2018) A new bulk parametrization of turbulent fluxes in the stably stratified surface layer over sea ice for climate models, European Geosciences Union General Assembly 2018, Vienna, 9–13 April 2018.

    Google Scholar 

  • Hall, R., Erdelyi, R., Hanna, E., Jones, J. M., & Scaife, A. A. (2015). Drivers of North Atlantic polar front jet stream variability. International Journal of Climatology, 35(8), 1697–1720.

    Article  Google Scholar 

  • Hanna, E., Cropper, T. E., Hall, R. J., & Cappelen, J. (2016). Greenland blocking index 1851–2015: A regional climate change signal. International Journal of Climatology, 36(15), 4847–4861.

    Article  Google Scholar 

  • Hanna, E., Hall, R. J., Cropper, T. E., Ballinger, T. J., Wake, L., Mote, T., & Cappelen, J. (2018). Greenland blocking index daily series 1851-2015: Analysis of changes in extremes and links with North Atlantic and UK climate variability and change. International Journal of Climatology, 38, 3546–3564.

    Article  Google Scholar 

  • Hanna, E., Jones, J. M., Cappelen, J., Mernild, S. H., Wood, L., Steffen, K., & Huybrechts, P. (2013). The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. International Journal of Climatology, 38, 862–880.

    Article  Google Scholar 

  • Hanley, D., & Richards W. G. (1991) Polar lows in Atlantic Canadian waters 1977–1989. Report: MAES 2–91. Scientific Services Division, Atlantic Region, Atmospheric Environment Service.

    Google Scholar 

  • Hansen-Bauer, I., & Gjessing, Y. T. (1988). Observations and model calculations of aerodynamic drag on sea ice in the Fram Strait. Tellus, Service. A, 40, 151–161.

    Article  Google Scholar 

  • Harden, B. E., & Renfrew, I. A. (2012). On the spatial distribution of high winds off Southeast Greenland. Geophysical Research Letters, 39. https://doi.org/10.1029/2012GL052245.

    Article  Google Scholar 

  • Harden, B. E., Renfrew, I. A., & Petersen, G. N. (2011). A climatology of wintertime barrier winds off Southeast Greenland. Journal of Climate, 24(17), 4701–4717. https://doi.org/10.1175/2011JCLI4113.1.

    Article  Google Scholar 

  • Harold, J. M., Bigg, G. R., & Turner, J. (1999). Mesocyclone activity over the North-East Atlantic. Part I: Vortex distribution and variability. International Journal of Climatology, 19, 1187–1204.

    Article  Google Scholar 

  • Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., & Shine, K. P. (1991). On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. Journal of the Atmospheric Sciences, 48, 651–680.

    Article  Google Scholar 

  • Hirschberg, P. A., & Fritsch, J. M. (1991). Tropopause undulations and the development of Extratropical cyclones. Part II: Diagnostic analysis and conceptual model. Monthly Weather Review, 119, 518–550.

    Article  Google Scholar 

  • Hoffman, R. N., Leidner, S. M., Hoffman, R. N., & Leidner, S. M. (2005). An introduction to the near–real–time QuikSCAT data. Weather and Forecasting, 20, 476–493. https://doi.org/10.1175/WAF841.1.

    Article  Google Scholar 

  • Holton, J. R. (2004). An introduction to dynamic meteorology. Elsevier Academic Press. pp 517.

    Google Scholar 

  • Holton, J. R., & Mass, C. (1976). Stratospheric vacillation cycles. Journal of the Atmospheric Sciences, 33, 2218–2225.

    Article  Google Scholar 

  • Holton, J. R., & Tan, H. C. (1982). The quasi-biennial oscillation in the northern hemisphere lower stratosphere. Journal of the Meteorological Society of Japan. Ser. II, 60(1), 140–148.

    Article  Google Scholar 

  • Hoskins, B. J., Mcintyre, M. E., & Robertson, A. W. (1985). On the use and significance of isentropic potential Vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 877–946. https://doi.org/10.1002/qj.4971147002.

    Article  Google Scholar 

  • Hoskins B., & Berrisford P. (1988). A potential vorticity perspective of the storm of 15–16 October 1987, Weather, doi: https://doi.org/10.1002/j.1477-8696.1988.tb03890.

  • Inoue, J., & Hori, M. E. (2011). Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? Geophysical Research Letters, 38, L12502. https://doi.org/10.11029/12011gl047696.

    Article  Google Scholar 

  • Jaiser, R., Nakamura, T., Handorf, D., Dethloff, K., Ukita, J., & Yamazaki, K. (2016). Atmospheric winter response to Arctic Sea ice changes in reanalysis data and model simulations. Journal of Geophysical Research: Atmospheres, 121(13), 7564–7577.

    Google Scholar 

  • Jakobson, E., Vihma, T., Palo, T., Jakobson, L., Keernik, H., & Jaagus, J. (2012). Validation of atmospheric reanalyzes over the Central Arctic Ocean. Geophysical Research Letters, 39, L10802. https://doi.org/10.1029/2012GL051591.

    Article  Google Scholar 

  • Jakobson, L., Vihma, T., Jakobson, E., Palo, T., Männik, A., & Jaagus, J. (2013). Low-level jet characteristics over the Arctic Ocean in spring and summer. Atmospheric Chemistry and Physics, 13, 11089–11099.

    Article  Google Scholar 

  • Joly, A., & Thorpe, A. J. (1989). Warm and occluded fronts in twodimensional moist baroclinic instability. Quarterly Journal of the Royal Meteorological Society, 115, 513–534.

    Article  Google Scholar 

  • Kahl, J. D., Serreze, M. C., & Schnell, R. C. (1992). Tropospheric low-level temperature inversions in the Canadian Arctic. Atmosphere-Ocean, 30(4), 511–529. https://doi.org/10.1080/07055900.1992.9649453.

    Article  Google Scholar 

  • Kaimal, J. C. & Finnigan, J. J., (1994). Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press, 289 pp. =y#v=onepage&q=Kaimal and Finnigan%2C 1994%3B&f=false. Accessed 22 Feb 2018.

    Google Scholar 

  • Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim, T., & Yoon, J.-H. (2014). Weakening of the stratospheric polar vortex by Arctic Sea-ice loss. Nature Communications, 5, 4646. https://doi.org/10.1038/ncomms5646.

    Article  Google Scholar 

  • Kim, B.-M., Hong, J.-Y., Jun, S.-Y., Zhang, X., Kwon, H., Kim, S.-J., Kim, J.-H., Kim, S.-W., & Kim, H.-K. (2017). Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Scientific Reports, 7, 40051. https://doi.org/10.1038/srep40051.

    Article  Google Scholar 

  • Kolstad, E. W. (2006). A new climatology of favourable conditions for reverse-shear polar lows. Tellus, 58A, 344–354.

    Article  Google Scholar 

  • Kolstad, E. W., & Bracegirdle, T. J. (2008). Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the northern hemisphere. Climate Dynamics, 30, 871–885.

    Article  Google Scholar 

  • Kolstad, E. W., Bracegirdle, T. J., & Zahn, M. (2016). Re-examining the roles of surface flux and latent heat release in a ‘hurricane-like’ polar low over the barents sea. Journal of Geophysical Research – Atmospheres, 121, 7853–7867. https://doi.org/10.1002/2015JD024633.

    Article  Google Scholar 

  • Kolstad, E. W., & Bracegirdle, T. J. (2017). Sensitivity of an apparently hurricane-like polar low to sea-surface temperature. Quarterly Journal of the Royal Meteorological Society, 143, 966–973.

    Article  Google Scholar 

  • Kristiansen, J., Sørland, S. L., Iversen, T., Bjørge, D., & Køltzow, M. Ø. (2011). High-resolution ensemble prediction of a polar low development. Tellus A: Dynamic Meteorology and Oceanography, 63(3), 585–604.

    Article  Google Scholar 

  • Kristjánsson, J. E., Thorsteinsson, S., & Røsting, B. (2009). Phase-locking of a rapidly developing extratropical cyclone by Greenland’s orography. Quarterly Journal of the Royal Meteorological Society, 135, 1986–1998. https://doi.org/10.1002/qj.497.

    Article  Google Scholar 

  • Kristjansson, J., & Coauthors. (2011). The Norwegian IPY-THORPEX. Polar lows and Arctic fronts during the 2008 Andøya campaign. Bulletin of the American Meteorological Society, 92, 1443–1446.

    Article  Google Scholar 

  • Lackmann, G. M. (2002). Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Monthly Weather Review, 130, 59–74. https://doi.org/10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    Article  Google Scholar 

  • Liberato, M. L. R. (2014). The 19 January 2013 windstorm over the North Atlantic: Large-scale dynamics and impacts on Iberia. Weather and Climate Extremes, 5-6, 16–28. https://doi.org/10.1016/j.wace.2014.06.002.

    Article  Google Scholar 

  • Linders, T., & Saetra, Ø. (2010). Can CAPE maintain polar lows? Journal of the Atmospheric Sciences, 67(8), 2559–2571.

    Article  Google Scholar 

  • Loescher, K. A., Young, G. S., Colle, B. A., Winstead, N. S., Loescher, K. A., Young, G. S., Colle, B. A., & Winstead, N. S. (2006). Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Monthly Weather Review, 134, 437–453. https://doi.org/10.1175/MWR3037.1.

    Article  Google Scholar 

  • Louis, J. F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17, 187–202, 1979.

    Article  Google Scholar 

  • Luo, D., Xiao, Y., Yao, Y., Dai, A., Simmonds, I., & Franzke, C. (2016a). Impact of Ural blockingon winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. Journal of Climate, 29, 3925–3947. https://doi.org/10.1175/JCLI-D-15-0611.1.

    Article  Google Scholar 

  • Luo, D., Xiao, Y., Diao, Y., Dai, A., Franzke, C., & Simmonds, I. (2016b). Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic oscillation. Journal of Climate, 29, 3949–3971. https://doi.org/10.1175/JCLI-D-15-0612.1.

    Article  Google Scholar 

  • Lüpkes, C., & Schlünzen, K. H. (1996). Modelling the arctic convective boundary-layer with different turbulence parameterisations. Boundary-Layer Meteorology, 79, 107–130.

    Article  Google Scholar 

  • Lüpkes, C., & Gryanik, V. M. (2015). A stability-dependent parametrization of transfer coefficients for momentum and heat over polar sea ice to be used in climate models. Journal of Geophysical Research, 120, 1–30.

    Google Scholar 

  • Lüpkes, C., Vihma, T., Jakobson, E., König-Langlo, G., & Tetzlaff, A. (2010). Meteorological observations from ship cruises during summer to the Central Arctic: A comparison with reanalysis data. Geophysical Research Letters, 37, L09810. https://doi.org/10.1029/2010GL042724.

    Article  Google Scholar 

  • Lüpkes, C., Vihma, T., Birnbaum, G., et al. (2012). Mesoscale modelling of the Arctic atmospheric boundary layer and its interaction with sea ice. In P. Lemke & H.-W. Jacobi (Eds.), Arctic climate change – The ACSYS decade and beyond (Atmospheric and Oceanographic Sciences Library) (Vol. 43). https://doi.org/10.1007/978–94–007–2027–5.

    Chapter  Google Scholar 

  • Lydolph, P. E. (1977). Climates of the Soviet Union: World survey of climatology (Vol. 7). Amsterdam: EIsevier Science Publishing Company. 443 pp.

    Google Scholar 

  • Mallet, P.-E., Claud, C., Cassou, C., Noer, G., & Kodera, K. (2013). Polar lows over the Nordic and Labrador seas: Synoptic circulation patterns and associations with North Atlantic-Europe wintertime weather regimes. Journal of Geophysical Research, 118, 2455–2472.

    Google Scholar 

  • Manzini, E., & Coauthors. (2014). Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. Journal of Geophysical Research: Atmospheres, 119, 7979–7998. https://doi.org/10.1002/2013JD021403.

    Article  Google Scholar 

  • Martius, O., Polvani, L. M., & Davies, H. C. (2009). Blocking precursors to stratospheric sudden warming events. Geophysical Research Letters, 36, L14806. https://doi.org/10.1029/2009GL038776.

    Article  Google Scholar 

  • Mass, C. F., Businger, S., Albright, M. D., Tucker, Z. A., Mass, C. F., Businger, S., Albright, M. D., & Tucker, Z. A. (1995). A windstorm in the Lee of a gap in a Coastal Mountain barrier. Monthly Weather Review, 123, 315–331. https://doi.org/10.1175/1520-0493(1995)123<0315:AWITLO>2.0.CO;2.

    Article  Google Scholar 

  • McCusker, K. E., Fyfe, J. C., & Sigmond, M. (2016). Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic Sea ice loss. Nature Geoscience, 838–842. https://doi.org/10.1038/ngeo2820.

    Article  Google Scholar 

  • McInnes, H., Kristjánsson, J. E., Schyberg, H., & Røsting, B. (2009). An assessment of a Greenland lee cyclone during the Greenland flow distortion experiment: An observational approach. Quarterly Journal of the Royal Meteorological Society, 135, 1968–1985. https://doi.org/10.1002/qj.524.

    Article  Google Scholar 

  • Michel, C., Terpstra, A., & Spengler, T. (2018). Polar mesoscale cyclone climatology for the nordic seas based on era-interim. Journal of Climate, 31, 2511–2532. https://doi.org/10.1175/JCLI-D-16-0890.1.

    Article  Google Scholar 

  • Mokhov, I. I., Akperov, M. G., Lagun, V. E., & Lutsenko, E. I. (2007). Intense arctic mesocyclones. Izvestiya, Atmospheric and Oceanic Physics, 43, 3.

    Article  Google Scholar 

  • Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofiz. Instituta Akademii Nauk SSSR, 24, 163–187.

    Google Scholar 

  • Montgomery, M. T., & Farrell, B. F. (1992). Polar low dynamics. Journal of the Atmospheric Sciences, 49, 2484–2505.

    Article  Google Scholar 

  • Moore, G. W. K. (2003). Gale force winds over the Irminger Sea to the east of Cape farewell, Greenland. Geophysical Research Letters, 30. https://doi.org/10.1029/2003GL018012.

    Article  Google Scholar 

  • Moore, G. W. K. (2013). The Novaya Zemlya bora and its impact on Barents Sea air-sea interaction. Geophysical Research Letters, 40, 3462–3467. https://doi.org/10.1002/grl.50641.

    Article  Google Scholar 

  • Moore, R. W., & Montgomery, M. T. (2005). Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. Journal of the Atmospheric Sciences, 62, 2703–2725.

    Article  Google Scholar 

  • Moore, G. W. K., & Renfrew, I. A. (2005). Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. Journal of Climate, 18(18), 3713–3725.

    Article  Google Scholar 

  • Moore, G. W. K., Renfrew, I. A., Moore, G. W. K., & Renfrew, I. A. (2005). Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. Journal of Climate, 18, 3713–3725. https://doi.org/10.1175/JCLI3455.1.

    Article  Google Scholar 

  • Moore, G. W. K., Pickart, R. S., & Renfrew, I. A. (2008). Buoy observations from the windiest location in the world ocean, Cape farewell, Greenland. Geophysical Research Letters, 35, L18802. https://doi.org/10.1029/2008GL034845.

    Article  Google Scholar 

  • Moore, G. W. K., Bromwich, D. H., Wilson, A. B., Renfrew, I., & Bai, L. (2016). Arctic system reanalysis improvements in topographically forced winds near Greenland. Quarterly Journal of the Royal Meteorological Society, 142, 2033–2045. https://doi.org/10.1002/qj.2798.

    Article  Google Scholar 

  • Müller, M., Batrak, Y., Kristiansen, J., Køltzow, M. A. Ø., & Noer, G. (2017). Characteristics of a convection-scale weather forecasting system for the European Arctic. Monthly Weather Review, 145, 4771–4787.

    Article  Google Scholar 

  • Naakka, T., Nygård, T., & Vihma, T. (2018). Arctic humidity inversions: Climatology and processes. Journal of Climate, 31(10), 3765–3787.

    Article  Google Scholar 

  • Nagata, M. (1987). On the structure of a convergent cloud band over the Japan Sea in winter; a prediction experiments. Journal of the Meteorological Society of Japan, 65, 871–883.

    Article  Google Scholar 

  • Nagata, M. (1992). Modeling case study of the Japan Sea convergent cloud band in a varying large-scale environments; evolution and upscale effect. Journal of the Meteorological Society of Japan, 70, 649–671.

    Article  Google Scholar 

  • Nakamura, T., Yamazaki, K., Iwamoto, K., Honda, M., Miyoshi, Y., Ogawa, Y., & Ukita, J. (2015). A negative phase shift of the winter AO/NAO due to the recent Arctic Sea-ice reduction in late autumn. Journal of Geophysical Research: Atmospheres, 120(8), 3209–3227.

    Google Scholar 

  • Noer, G., Saetre, Ø., Lien, T., & Gusdal, Y. (2011). A climatological study of polar lows in the Nordic seas. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.846.

    Article  Google Scholar 

  • Nordeng, T. E. (1987). The effect of vertical and slantwise convection on the simulation of polar lows. Tellus, 39A, 354–375.

    Article  Google Scholar 

  • Obukhov, A. M. (1946). Turbulence in an atmosphere with inhomogeneous temperature. The Institute of Theoretical Geophysics of the Academy of Sciences of the USSR, 1, 95–115.

    Google Scholar 

  • Oltmanns, M., Straneo, F., Moore, G. W. K., Mernild, S. H., Oltmanns, M., Straneo, F., Moore, G. W. K., & Mernild, S. H. (2014). Strong downslope wind events in Ammassalik, Southeast Greenland. Journal of Climate, 27, 977–993. https://doi.org/10.1175/JCLI-D-13-00067.1.

    Article  Google Scholar 

  • Omrani, N. E., Keenlyside, N. S., Bader, J. R., & Manzini, E. (2014). Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dynamics, 42, 649–663.

    Article  Google Scholar 

  • Outten, S. D., Renfrew, I. A., & Petersen, G. N. (2009). An easterly tip jet off Cape farewell, Greenland. II: Simulations and dynamics. Quarterly Journal of the Royal Meteorological Society, 135, 1934–1949. https://doi.org/10.1002/qj.531.

    Article  Google Scholar 

  • Overland, J. E., & Wang, M. (2005). The Arctic climate paradox: The recent decrease of the Arctic oscillation. Geophysical Research Letters, 32, L06701. https://doi.org/10.1029/2004GL021752.

    Article  Google Scholar 

  • Overland, J. E., Adams, J. M., & Bond, N. A. (1999). Decadal variability of the Aleutian low and its relation to high-latitude circulation. Journal of Climate, 12(5), 1542–1548.

    Article  Google Scholar 

  • Overland, J., Francis, J., Hall, R., Hanna, E., Kim, S.-J., & Vihma, T. (2015). The melting Arctic and mid-latitude weather patterns: Are they connected? Journal of Climate, 28, 7917–7932.

    Article  Google Scholar 

  • Papritz, L., & Pfahl, S. (2016). Importance of latent heating in mesocyclones for the decay of cold air outbreaks: A numerical process study from the Pacific sector of the Southern Ocean. Monthly Weather Review, 144, 315–336. https://doi.org/10.1175/MWR-D-15-0268.1.

    Article  Google Scholar 

  • Papritz, L., & Spengler, T. (2017). A lagrangian climatology of wintertime cold air outbreaks in the irminger and Nordic seas and their role in shaping air-sea heat fluxes. Journal of Climate, 30, 2717–2737. https://doi.org/10.1175/JCLI-D-16-0605.1.

    Article  Google Scholar 

  • Parish, T. R. (1983). The influence of the Antarctic peninsula on the wind field over the western Weddell Sea. Journal of Geophysical Research, 88, 2684. https://doi.org/10.1029/JC088iC04p02684.

    Article  Google Scholar 

  • Parker, D. J., & Thorpe, A. J. (1995). Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. Journal of the Atmospheric Sciences, 52(10), 1699–1711.

    Article  Google Scholar 

  • Peltier, W. R., Clark, T. L., Peltier, W. R., & Clark, T. L. (1979). The evolution and stability of finite-Amplitude Mountain waves. Part II: Surface Wave Drag and Severe Downslope Windstorms. Journal of the Atmospheric Sciences, 36, 1498–1529. https://doi.org/10.1175/1520-0469(1979)036<1498:TEASOF>2.0.CO;2.

    Article  Google Scholar 

  • Persson, P. O. G., & Vihma, T. (2017). Chapter 6: The atmosphere over sea ice. In D. N. Thomas (Ed.), Sea ice (3rd ed., pp. 160–196). London: Wiley-Blackwell.

    Google Scholar 

  • Petersen, G. N., Renfrew, I. A., & Moore, G. W. K. (2009). An overview of barrier winds off southeastern Greenland during the Greenland flow distortion experiment. Quarterly Journal of the Royal Meteorological Society, 135, 1950–1967. https://doi.org/10.1002/qj.455.

    Article  Google Scholar 

  • Petterssen, S., & Smebye, S. (1971). On the development of extratropical cyclones. Quarterly Journal of the Royal Meteorological Society, 97, 457–482.

    Article  Google Scholar 

  • Pickart, R. S., Spall, M. A., Ribergaard, M. H., Moore, G. W. K., & Milliff, R. F. (2003). Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152.

    Article  Google Scholar 

  • Pierrehumbert, R. T., Wyman, B., Pierrehumbert, R. T., & Wyman, B. (1985). Upstream effects of Mesoscale Mountains. Journal of the Atmospheric Sciences, 42, 977–1003. https://doi.org/10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    Article  Google Scholar 

  • Queney, P. (1948). The problem of air flow over mountains: A summary of theoretical studies. Bulletin of the American Meteorological Society, 29, 16–26. https://doi.org/10.2307/26257649.

    Article  Google Scholar 

  • Rajewicz, J., & Marshall, S. J. (2014). Variability and trends in anticyclonic circulation over the Greenland ice sheet, 1948–2013. Geophysical Research Letters, 41(8), 2842–2850.

    Article  Google Scholar 

  • Rasmussen, E. (1979). The polar low as an extratropical CISK disturbance. Quarterly Journal of the Royal Meteorological Society, 105, 531–549.

    Article  Google Scholar 

  • Reed, R. J., Grell, G. A., & Kuo, Y.-H. (1993). The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Monthly Weather Review, 121, 1595–1612.

    Article  Google Scholar 

  • Reeve, M. A., & Kolstad, E. W. (2011). The Spitsbergen south Cape tip jet. Quarterly Journal of the Royal Meteorological Society, 137, 1739–1748. https://doi.org/10.1002/qj.876.

    Article  Google Scholar 

  • Renfrew, I. A., & Coauthors. (2008). The Greenland flow distortion experiment. Bulletin of the American Meteorological Society, 89, 1307–1324. https://doi.org/10.1175/2008BAMS2508.1.

    Article  Google Scholar 

  • Renfrew, I. A., Outten, S. D., & Moore, G. W. K. (2009). An easterly tip jet off Cape farewell, Greenland. I: Aircraft observations. Quarterly Journal of the Royal Meteorological Society, 135, 1919–1933. https://doi.org/10.1002/qj.513.

    Article  Google Scholar 

  • Rinke, A., Maturilli, M., Graham, R. M., Matthes, H., Handorf, D., Cohen, L., Hudson, S. R., & Moore, J. C. (2017). Extreme cyclone events in the Arctic: Wintertime variability and trends. Environmental Research Letters, 12, 094006.

    Article  Google Scholar 

  • Sampe, T., Xie, S.-P., Sampe, T., & Xie, S.-P. (2007). Mapping High Sea winds from space: A global climatology. Bulletin of the American Meteorological Society, 88, 1965–1978. https://doi.org/10.1175/BAMS-88-12-1965.

    Article  Google Scholar 

  • Sandvik, A. D., Furevik, B. R., Sandvik, A. D., & Furevik, B. R. (2002). Case study of a coastal jet at Spitsbergen—Comparison of SAR- and model-estimated wind. Monthly Weather Review, 130, 1040–1051. https://doi.org/10.1175/1520-0493(2002)130<1040:CSOACJ>2.0.CO;2.

    Article  Google Scholar 

  • Sandvik, A. D., & Furevik, B. R. (2002). Case study of a coastal jet at Spitsbergen—Comparison of SAR-and model-estimated wind. Monthly Weather Review, 130(4), 1040–1051.

    Article  Google Scholar 

  • Sardie, J. M., & Warner, T. T. (1983). On the mechanism for the development of polar lows. Journal of the Atmospheric Sciences, 40, 869–881.

    Article  Google Scholar 

  • Sawyer, J. S. (1960). Numerical calculation of the displacements of a stratified airstream crossing a ridge of small height. Quarterly Journal of the Royal Meteorological Society, 86, 326–345. https://doi.org/10.1002/qj.49708636905.

    Article  Google Scholar 

  • Scaife, A. A., Karpechko, A. Y., Baldwin, M. P., Brookshaw, A., Butler, A. H., Eade, R., Gordon, M., MacLachlan, C., Martin, N., Dunstone, N., & Smith, D. (2016). Seasonal winter forecasts and the stratosphere. Atmospheric Science Letters, 17(1), 51–56.

    Article  Google Scholar 

  • Schär, C., & Davies, H. C. (1990). An instability of mature cold fronts. Journal of the Atmospheric Sciences, 47, 929–950.

    Article  Google Scholar 

  • Schär, C. (1993). A generalization of Bernoulli’s theorem. Journal of the Atmospheric Sciences, 50, 1437–1443. https://doi.org/10.1175/1520-0469(1993)050<1437:AGOBT>2.0.CO;2.

    Article  Google Scholar 

  • Scherrer, S., Croci-Maspoli, M., Schwierz, C., & Appenzeller, C. (2006). Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the euro-Atlantic region. International Journal of Climatology, 26, 233–249.

    Article  Google Scholar 

  • Schwerdtfeger, W. (1975). The effect of the Antarctic peninsula on the temperature regime of the Weddell Sea. Monthly Weather Review, 103, 45–51. https://doi.org/10.1175/1520-0493(1975)103<0045:TEOTAP>2.0.CO;2.

    Article  Google Scholar 

  • Scorer, R. S. (1949). Theory of waves in the lee of mountains. Quarterly Journal of the Royal Meteorological Society, 75, 41–56. https://doi.org/10.1002/qj.49707532308.

    Article  Google Scholar 

  • Screen, J. A., Deser, C., Simmonds, I., & Tomas, R. (2014). Atmospheric impacts of Arctic Sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dynamics, 43(1–2), 333–344.

    Article  Google Scholar 

  • Sedlar, J., Shupe, M. D., & Tjernström, M. (2012). On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. Journal of Climate, 25(7), 2374–2393.

    Article  Google Scholar 

  • Sepp, M., & Jaagus, J. (2011). Changes in the activity and tracks of Arctic cyclones. Climatic Change, 105, 577–595. https://doi.org/10.1007/s10584-010-9893-7.

    Article  Google Scholar 

  • Sergeev, D., Renfrew, I., Spengler, T., & Dorling, S. (2016). Structure of a shear-line polar low. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.2911.

    Article  Google Scholar 

  • Serreze, M. C., & Barrett, A. P. (2008). The summer cyclone maximum over the Central Arctic Ocean. Journal of Climate, 21, 1048–1065. https://doi.org/10.1175/2007JCLI1810.1.

    Article  Google Scholar 

  • Serreze, M. C., Kahl, J. D., & Schnell, R. C. (1992). Low-level temperature inversions of the Eurasian Arctic and comparisons with soviet drifting station data. Journal of Climate, 5, 615–629.

    Article  Google Scholar 

  • Shapiro, M., Fedor, L., & Hampel, T. (1987). Research aircraft observations of a polar low over the Norwegian Sea. Tellus, 39A, 272–306.

    Article  Google Scholar 

  • Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernström, M., Sedlar, J., Mauritsen, T., et al. (2013). Cloud and boundary layer interactions over the Arctic Sea ice in late summer. Atmospheric Chemistry and Physics, 13(18), 9379–9399.

    Article  Google Scholar 

  • Sigmond, M., Scinocca, J. F., Kharin, V. V., & Shepherd, T. G. (2013). Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geoscience, 6, 98–102.

    Article  Google Scholar 

  • Simmonds, I., & Rudeva, I. (2012). The great Arctic cyclone of August 2012. Geophysical Research Letters, 39, L23709. https://doi.org/10.1029/2012GL054259.

    Article  Google Scholar 

  • Singarayer, J. S., Bamber, J. L., & Valdes, P. J. (2006). Twenty-first-century climate impacts from a declining Arctic Sea ice cover. Journal of Climate, 19(7), 1109–1125.

    Article  Google Scholar 

  • Skeie, P., & Grønås, S. (2000). Strongly stratified easterly flows across Spitsbergen. Tellus A, 52, 473–486. https://doi.org/10.1034/j.1600-0870.2000.01075.x.

    Article  Google Scholar 

  • Smith, R. B. (1979). The influence of mountains on the atmosphere. Advances in Geophysics, 21, 87–230. https://doi.org/10.1016/S0065-2687(08)60262-9.2018.

    Article  Google Scholar 

  • Smith, R. B. (1989). Mountain-induced stagnation points in hydrostatic flow. Tellus A, 41A, 270–274. https://doi.org/10.1111/j.1600-0870.1989.tb00381.x.

    Article  Google Scholar 

  • Smith, R. B., & Grønås, S. (1993). Stagnation points and bifurcation in 3-D mountain airflow. Tellus A, 45, 28–43. https://doi.org/10.1034/j.1600-0870.1993.00003.x.

    Article  Google Scholar 

  • Smith, D. M., Dunstone, N. J., Scaife, A. A., Fiedler, E. K., Copsey, D., & Hardiman, S. C. (2017). Atmospheric response to Arctic and Antarctic Sea ice: The importance of ocean–atmosphere coupling and the background state. Journal of Climate, 30(12), 4547–4565.

    Article  Google Scholar 

  • Smolarkiewicz, P. K., Rotunno, R., Smolarkiewicz, P. K., & Rotunno, R. (1989). Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically Generated Lee Vortices. Journal of the Atmospheric Sciences, 46, 1154–1164. https://doi.org/10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    Article  Google Scholar 

  • Snyder, C., & Lindzen, R. S. (1991). Quasi-geostrophic wave-CISK in an unbounded baroclinic shear. Journal of the Atmospheric Sciences, 48(1), 76–86.

    Article  Google Scholar 

  • Solomon, A., Shupe, M. D., Persson, P. O. G., & Morrison, H. (2011). Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmospheric Chemistry and Physics, 11(19), 10127–10148.

    Article  Google Scholar 

  • Stroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic Sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501.

    Article  Google Scholar 

  • Stull, R. B. (1988). An introduction to boundary layer meteorology. Kluwer. 666 pp.

    Google Scholar 

  • Tanaka, H. L., Yamagami, A., & Takahashi, S. (2012). The structure and behavior of the arctic cyclone in summer analyzed by the JRA-25/JCDAS data. Polar Science, 6, 44–69. https://doi.org/10.1016/j.polar.2012.03.001.

    Article  Google Scholar 

  • Tao, W., Zhang, J., & Zhang, X. (2017a). The role of stratosphere vortex downward intrusion in a long-lasting late-summer Arctic storm. Quarterly Journal of the Royal Meteorological Society, 143, 1953–1966. https://doi.org/10.1002/qj.3055.

    Article  Google Scholar 

  • Tao, W., Zhang, J., & Zhang, X. (2017b). Driving roles of tropospheric and stratospheric thermal anomalies in the intensification and persistence of 2012 Arctic Superstorm. Geophysical Research Letters. https://doi.org/10.1002/2017GL074778.

  • Terpstra, A., Michel, C., & Spengler, T. (2016). Forward and reverse shear environments during polar low genesis over the Northeast Atlantic. Monthly Weather Review, 144, 1341–1354. https://doi.org/10.1175/MWR-D-15-0314.1.

    Article  Google Scholar 

  • Terpstra, A., Spengler, T., & Moore, R. W. (2015). Idealised simulations of polar low development in an Arctic moist baroclinic environment. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.2507.

    Article  Google Scholar 

  • Tetzlaff, A., Lüpkes, C., & Hartmann, J. (2015). Aircraft-based observations of atmospheric boundary-layer modification over Arctic leads. Quarterly Journal of the Royal Meteorological Society, 141(692), 2839–2856.

    Article  Google Scholar 

  • Thorsteinsson, S., & Sigurdsson, S. (1996). Orogenic blocking and deflection of stratified air flow on an f-plane. Tellus A, 48, 572–583. https://doi.org/10.1034/j.1600-0870.1996.t01-3-00006.x.

    Article  Google Scholar 

  • Timmreck, C. (2012). Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdisciplinary Reviews: Climate Change, 3(6), 545–564.

    Google Scholar 

  • Tjernström, M. (2007). Is there a diurnal cycle in the summer cloudcapped arctic boundary layer? Journal of the Atmospheric Sciences, 64, 3970–3986. https://doi.org/10.1175/2007jas2257.1.

    Article  Google Scholar 

  • Tjernström, M., & Graversen, R. G. (2009). The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quarterly Journal of the Royal Meteorological Society, 135, 431–443. https://doi.org/10.1002/qj.380.

    Article  Google Scholar 

  • Tjernström, M., Zagar, M., Svensson, G., Cassano, J. J., Pfeifer, S., Rinke, A., Wyser, K., Dethloff, K., Jones, C., Semmler, T., & Shaw, M. (2005). Modelling the Arctic boundary layer: An evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Boundary-Layer Meteorology, 117, 337–381.

    Article  Google Scholar 

  • Tjernström, M., Sedlar, J., & Shupe, M. D. (2008). How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations. Journal of Applied Meteorology and Climatology, 47, 2405–2422.

    Article  Google Scholar 

  • Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L., Kurtz, N., Laxon, S. W., & Bacon, S. (2014). Impact of variable atmospheric and oceanic form drag on simulations of Arctic Sea ice. Journal of Physical Oceanography, 44(5), 1329–1353. https://doi.org/10.1175/JPO-D-13-0215.1.

    Article  Google Scholar 

  • Uttal, T., Curry, J. A., McPhee, M. G., et al. (2002). The surface heat budget of the Arctic. Bulletin of the American Meteorological Society, 83, 255–275.

    Article  Google Scholar 

  • Vallis, G. K., & Gerber, E. P. (2008). Local and hemispheric dynamics of the North Atlantic oscillation, annular patterns and the zonal index. Dynamics of Atmospheres and Oceans, 44, 184–212. https://doi.org/10.1016/j.dynatmoce.2007.04.003.

    Article  Google Scholar 

  • Vavrus, S. (2018). The influence of Arctic amplification on mid-latitude weather and climate. Current Climate Change Reports. https://doi.org/10.1007/s40641-018-0105-2.

    Article  Google Scholar 

  • Vihma, T. (2014). Effects of Arctic Sea ice decline on weather and climate: A review. Surveys in Geophysics, 35(5), 1175–1214.

    Article  Google Scholar 

  • Vihma, T. (2017). Weather extremes linked to interaction of the Arctic and mid-latitudes. In S.-Y. Wang et al. (Eds.), Climate extremes: Mechanisms and potential prediction (Geophysical monograph series, 226) (pp. 39–49). American Geophysical Union.

    Google Scholar 

  • Vihma, T., & Brümmer, B. (2002). Observations and modelling of on-ice and off-ice flows in the northern Baltic Sea. Boundary-Layer Meteorology, 103, 1–27.

    Article  Google Scholar 

  • Vihma, T., & Pirazzini, R. (2005). On the factors controlling the snow surface and 2-m air temperatures over the Arctic Sea ice in winter. Boundary-Layer Meteorology, 117, 73–90.

    Article  Google Scholar 

  • Vihma, T., Hartmann, J., & Lüpkes, C. (2003). A case study of an on-ice air flow over the Arctic marginal sea ice zone. Boundary-Layer Meteorology, 107, 189–217, 2003.

    Article  Google Scholar 

  • Vihma, T., Kilpeläinen, T., Manninen, M., Sjöblom, A., Jakobson, E., Palo, T., Jaagus, J., & Maturilli, M. (2011). Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring. Advances in Meteorology, 2011, 486807., 14 p. https://doi.org/10.1155/2011/486807.

    Article  Google Scholar 

  • Vihma, T., Tisler, P., & Uotila, P. (2012). Atmospheric forcing on the drift of Arctic Sea ice in 1989–2009. Geophysical Research Letters, 39, L02501. https://doi.org/10.1029/2011GL050118 .

    Article  Google Scholar 

  • Walsh, J. E., & Chapman, W. L. (1998). Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. Journal of Climate, 11, 3030–3045.

    Article  Google Scholar 

  • Wang, J., Zhang, J., Watanabe, E., Ikeda, M., Mizobata, K., Walsh, J. E., Bai, X., & Wu, B. (2009). Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophysical Research Letters, 36, L05706. https://doi.org/10.1029/2008GL036706.

    Article  Google Scholar 

  • Wagner, J., Gohm, A., Dörnbrack, A., & Schäfler, A. (2011). The mesoscale structure of a polar low: Airborne lidar measurements and simulations. Quarterly Journal of the Royal Meteorological Society, 137, 1516–1531.

    Article  Google Scholar 

  • Wallington, C. E., & Portnall, J. (1958). A numerical study of the wavelength and amplitude of lee waves. Quarterly Journal of the Royal Meteorological Society, 84, 38–45. https://doi.org/10.1002/qj.49708435905.

    Article  Google Scholar 

  • Watanabe, S. I., Niino, H., & Yanase, W. (2016). Climatology of polar mesocyclones over the sea of Japan using a new objective tracking method. Monthly Weather Review, 144, 2503–2515. https://doi.org/10.1175/MWR-D-15-0349.1.

    Article  Google Scholar 

  • Watanabe, S. I. I., Niino, H., & Yanase, W. (2017). Structure and environment of polar mesocyclones over the northeastern part of the sea of Japan. Monthly Weather Review, 145(6), 2217–2233.

    Article  Google Scholar 

  • Wilhelmsen, K. (1985). Climatological study of gale-producing polar lows near Norway. Tellus A: Dynamic Meteorology and Oceanography, 37(5), 451–459.

    Article  Google Scholar 

  • Woo, S.-H., Sung, M.-K., Son, S.-W., & Kug, J.-S. (2015). Connection between weak stratospheric vortex events and the Pacific decadal oscillation. Climate Dynamics, 45, 3481–3492.

    Article  Google Scholar 

  • Wood, N. (2000). Wind flow over complex terrain: A historical perspective and the Prospect for large-Eddy modelling. Boundary-Layer Meteorol., 96, 11–32. https://doi.org/10.1023/A:1002017732694.

    Article  Google Scholar 

  • Woollings, T., & Blackburn, a M. (2012). The NorthAtlantic jet stream under climate change and its relation to the NAO and EA patterns. Journal of Climate, 25, 886–902. https://doi.org/10.1175/JCLI-D-11-00087.1.

    Article  Google Scholar 

  • Wu, B., Wang, J., & Walsh, J. E. (2006). Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. Journal of Climate, 19, 210–225. https://doi.org/10.1175/JCLI3619.1.

    Article  Google Scholar 

  • Wu, B., Su, J., & Zhang, R. (2011). Effects of autumn-winter arctic sea ice on winter Siberian high. Chinese Science Bulletin, 56, 3220–3228. https://doi.org/10.1007/s11434-011-4696-4.

    Article  Google Scholar 

  • Yamazaki, A., Inoue, J., Dethloff, K., Maturilli, M., & Konig-Langlo, G. (2015). Impact of radiosonde observations on forecasting summertime Arctic cyclone formation. Journal of Geophysical Research: Atmospheres, 120, 3249–3273. https://doi.org/10.1002/2014JD022925.

    Google Scholar 

  • Yanase, W., & Niino, H. (2007). Dependence of polar low development on baroclinicity and physical processes: An idealized high-resolution numerical experiment. Journal of the Atmospheric Sciences, 64, 3044–3067.

    Article  Google Scholar 

  • Yanase, W., Niino, H., Watanabe, S. I. I., Hodges, K., Zahn, M., Spengler, T., & Gurvich, I. A. (2016). Climatology of polar lows over the sea of Japan using the JRA-55 reanalysis. Journal of Climate, 29(2), 419–437.

    Article  Google Scholar 

  • Yoden, S. (1987). Bifurcation properties of a stratospheric vacillation model. Journal of the Atmospheric Sciences, 44, 1723–1733.

    Article  Google Scholar 

  • Zahn, M., & von Storch, H. (2008). A long-term climatology of North Atlantic polar lows. Geophysical Research Letters, 35, L22702. https://doi.org/10.1029/2008GL035769.

    Article  Google Scholar 

  • Zahn, M., & von Storch, H. (2010). Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature, 467. https://doi.org/10.1038/nature09388.

    Article  Google Scholar 

  • Zappa, G., & Shaffrey, L. (2014). Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERAinterim reanalysis? Monthly Weather Review, 142, 2596–2608.

    Article  Google Scholar 

  • Zhang, J., Liu, F., Tao, W., Krieger, J., Shulski, M., & Zhang, X. (2016). Mesoscale climatology and variability of surface winds over the Chukchi-Beaufort coastal areas. Journal of Climate, 29, 2721–2739. https://doi.org/10.1175/JCLI-D-15-0436.1.

    Article  Google Scholar 

  • Zhang, X., Walsh, J. E., Zhang, J., Bhatt, U. S., & Ikeda, M. (2004). Climatology and interannual variability of arctic cyclone activity: 1948-2002. Journal of Climate, 17, 2300–2317. https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    Article  Google Scholar 

Download references

Acknowledgements

The work on Chap. 1 has been supported by the Academy of Finland (contracts 286298 and 317999) and by the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG) (Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCeProcesses, and Feedback Mechanisms (AC)3” (TRR 172, project no. 268020496)). This work was supported by the US National Science Foundation (Grant #ARC-1023592, ARC-1107509, and PLR-1304684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius O. Jonassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jonassen, M.O. et al. (2020). Dynamical Processes in the Arctic Atmosphere. In: Kokhanovsky, A., Tomasi, C. (eds) Physics and Chemistry of the Arctic Atmosphere. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-33566-3_1

Download citation

Publish with us

Policies and ethics