Skip to main content

Gravity-Capillary and Flexural-Gravity Solitary Waves

  • Chapter
  • First Online:
Nonlinear Water Waves

Abstract

Solitary gravity-capillary and flexural-gravity waves in two and three dimensions of space are reviewed in this paper. Numerical methods used to compute the solitary waves are described in detail and typical solutions found over the years are presented. Similarities and differences between the solutions for the two physical problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.J. Ablowitz, H. Segur, On the evolution of packets of water waves. J. Fluid Mech. 92(4), 691–715 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Akers, P.A. Milewski, A model equation for wavepacket solitary waves arising from capillary-gravity flows. Stud. Appl. Math. 122(3), 249–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. T.R. Akylas, Envelope solitons with stationary crests. Phys. Fluids A 5(4), 789–791 (1993)

    Article  MATH  Google Scholar 

  4. T.R. Akylas, Three-dimensional long water-wave phenomena. Ann. Rev. Fluid Mech. 26(1), 191–210 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. T.R. Akylas, Y. Cho, On the stability of lumps and wave collapse in water waves. Philos. Trans. R. Soc. A 366(1876), 2761–2774 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.R. Alam, Dromions of flexural-gravity waves. J. Fluid Mech. 719, 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. D.J. Benney, G.J. Roskes, Wave instabilities. Stud. Appl. Math. 48, 377–385 (1969)

    Article  MATH  Google Scholar 

  8. K.M. Berger, P.A. Milewski, The generation and evolution of lump solitary waves in surface-tension-dominated flows. SIAM J. Appl. Math. 61(3), 731–750 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Buffoni, M.D. Groves, S.-M. Sun, E. Wahlén, Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves. J. Differ. Equ. 254, 1006–1096 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Buffoni, M.D. Groves, E. Wahlén, A variational reduction and the existence of a fully localised solitary wave for the three-dimensional water-wave problem with weak surface tension. Arch. Rat. Mech. Anal. 228, 773–820 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.R. Champneys, J.-M. Vanden-Broeck, G.J. Lord, Do true elevation gravity-capillary solitary waves exist? A numerical investigation. J. Fluid Mech. 454, 403–417 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Clamond, D. Dutykh, A. Durán, A plethora of generalised solitary gravity-capillary water waves. J. Fluid Mech. 784, 664–680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Craig, C. Sulem, Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Davey, K. Stewartson, On three-dimensional packets of surface waves. Proc. R. Soc. A 338, 101–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Dias, G. Iooss, Capillary-gravity solitary waves with damped oscillations. Phys. D 65(4), 399–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Dias, G. Iooss, Water-waves as a spatial dynamical system, in Handbook of Mathematical Fluid Dynamics, vol. 2 (North-Holland, Amsterdam, 2003), pp. 443–499

    MATH  Google Scholar 

  17. F. Dias, C. Kharif, Nonlinear gravity and capillary-gravity waves. Annu. Rev. Fluid Mech. 31, 301–346 (1999)

    Article  MathSciNet  Google Scholar 

  18. F. Dias, P. Milewski, On the fully-nonlinear shallow-water generalized Serre equations. Phys. Lett. A 374(8), 1049–1053 (2010)

    Article  MATH  Google Scholar 

  19. F. Dias, D. Menasce, J.-M. Vanden-Broeck, Numerical study of capillary-gravity solitary waves. Eur. J. Mech. B/Fluids 15, 17–36 (1996)

    MathSciNet  MATH  Google Scholar 

  20. V.D. Djordjevic, L.G. Redekopp, On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79, 703–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. A.I. Dyachenko, E.A. Kuznetsov, M.D. Spector, V.E. Zakharov, Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221, 73–79 (1996)

    Article  Google Scholar 

  22. L.K. Forbes, Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution. J. Fluid Mech. 169, 409–428 (1986)

    Google Scholar 

  23. L.K. Forbes, Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution. J. Fluid Mech. 188, 491–508 (1988)

    Google Scholar 

  24. L.K. Forbes, An algorithm for 3-dimensional free surface problems in hydrodynamics. J. Comput. Phys. 82, 330–347 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Gao, J.-M. Vanden-Broeck, Numerical studies of two-dimensional hydroelastic periodic and generalised solitary waves. Phys. Fluids 26, 087101 (2014)

    Article  MATH  Google Scholar 

  26. T. Gao, Z. Wang, J.-M. Vanden-Broeck. New hydroelastic solitary waves in deep water and their dynamics. J. Fluid Mech. 788, 469–491 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Gao, Z. Wang, J.-M. Vanden-Broeck, On asymmetric generalized solitary gravity-capillary waves in finite depth. Proc. R. Soc. A 472, 20160454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Gao, J.-M. Vanden-Broeck, Z. Wang, Numerical computations of two-dimensional flexural-gravity solitary waves on water of arbitrary depth. IMA J. Appl. Math. 83, 436–450 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.G. Greenhill, Wave motion in hydrodynamics. Am. J. Math. 9, 62–96 (1886)

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Grimshaw, B. Malomed, E. Benilov, Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg-de Vries equation. Phys. D 77, 473–485

    Google Scholar 

  31. M.D. Groves, S.-M. Sun, Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem. Arch. Rat. Mech. Anal. 188, 1–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. M.D. Groves, B. Hewer, E. Wahlén, Variational existence theory for hydroelastic solitary waves. C. R. Math. Acad. Sci. Paris 354, 1078–1086 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Guyenne, E.I. Părău, Computations of fully nonlinear hydroelastic solitary waves on deep water. J. Fluid Mech. 713, 307–329 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Guyenne, E.I. Părău, Finite-depth effects on solitary waves in a floating ice sheet. J. Fluids Struct. 49, 242–262 (2014)

    Article  Google Scholar 

  35. P. Guyenne, E.I. Părău, Forced and unforced flexural-gravity solitary waves. Proc. IUTAM 11, 44–57 (2014)

    Article  Google Scholar 

  36. P. Guyenne, E.I. Părău, Asymptotic modeling and numerical simulation of solitary waves in a floating ice sheet, in Proceedings of 25th International Ocean Polar Engineering Conference (ISOPE 2015), Kona, Hawaii, 21–26 June 2015, pp. 467–475

    Google Scholar 

  37. M. Hărăguş-Courcelle, A. Il’ichev, Three-dimensional solitary waves in the presence of additional surface effects. Eur. J. Mech. B/Fluids 17(5), 739–768 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.K. Hunter, J.-M. Vanden-Broeck, Solitary and periodic gravity-capillary waves of finite amplitude. J. Fluid Mech. 134, 205–219 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. A.T. Il’ichev, V.J. Tomashpolskii, Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress. Wave Motion 86, 11–20 (2019)

    Article  MathSciNet  Google Scholar 

  40. G. Iooss, K. Kirchgässner, Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris Ser. 1 311, 265–268 (1990)

    MATH  Google Scholar 

  41. G. Iooss, K. Kirchgässner, Water waves for small surface tension: an approach via normal form. Proc. R. Soc. Edin. A 122, 267–299 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Iooss, P. Kirrmann, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves. Arch. Rat. Mech. Anal. 136, 1–19 (1996)

    Article  MATH  Google Scholar 

  43. B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15(6), 539–541 (1970)

    MATH  Google Scholar 

  44. B. Kim, T.R. Akylas, On gravity-capillary lumps. J. Fluid Mech. 540, 337–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. K. Kirchgässner, Nonlinear resonant surface waves and homoclinic bifurcation. Adv. Appl. Math. 26, 135–181 (1988)

    MATH  Google Scholar 

  46. A. Korobkin, E.I. Părău, J.-M. Vanden-Broeck, The mathematical challenges and modelling of the hydroelasticity. Philos. Trans. Royal Soc. A. 369, 2803–2812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 36, 422–433 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Longuet-Higgins, Capillary-gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451–470 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  49. M.S. Longuet-Higgins, Capillary-gravity waves of solitary type and envelope solitons on deep water. J. Fluid Mech. 252, 703–711 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. P.A. Milewski, Three-dimensional localized solitary gravity-capillary waves. Commun. Math. Sci. 3(1), 89–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. P.A. Milewski, J.-M. Vanden-Broeck, Z. Wang, Dynamics of steep two-dimensional gravity-capillary solitary waves. J. Fluid Mech. 664, 466–477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. P.A. Milewski, J.-M. Vanden-Broeck, Z. Wang, Hydroelastic solitary waves in deep water. J. Fluid Mech. 679, 628–640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. P.A. Milewski, J.-M. Vanden-Broeck, Z. Wang, Steady dark solitary flexural gravity waves. Proc. R. Soc. A 469, 20120485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. P.A. Milewski, Z. Wang, Three dimensional flexural-gravity waves. Stud. Appl. Math. 131(2), 135–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. E. Părău, F. Dias, Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech. 460, 281–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. E.I. Părău, J.-M. Vanden-Broeck, Nonlinear two- and three- dimensional free surface flows due to moving disturbances. Eur. J. Mech. B/Fluids 21, 643–656 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. E.I. Părău, J.-M. Vanden-Broeck, Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Philos. Trans. R. Soc. A 369, 2973–2988 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. E.I. Părău, J.-M. Vanden-Broeck, Three-dimensional nonlinear waves under an ice sheet and related flows, in Proceedings of 21st International Offshore Polar Engineering Conference (ISOPE-2011), Maui, 19–24 June 2011 (International Society of Offshore and Polar Engineers (ISOPE), Mountain View, 2011)

    Google Scholar 

  59. E.I. Părău, J.-M. Vanden-Broeck, M.J. Cooker, Nonlinear three-dimensional gravity-capillary solitary waves. J. Fluid Mech. 536, 99–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. E.I. Părău, J.-M. Vanden-Broeck, M.J. Cooker, Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems. Phys. Fluids. 7, 122101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. P.I. Plotnikov, J.F. Toland, Modelling nonlinear hydroelastic waves. Philos. Trans. R. Soc. A 369, 2942–2956 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. F. Smith, A. Korobkin, E. Parau, D. Feltham, V. Squire, Modelling of sea-ice phenomena. Philos. Trans. R. Soc. A 376, 20180157 (2018)

    Article  Google Scholar 

  63. O. Trichtchenko, E.I. Parau, J.-M. Vanden-Broeck, P. Milewski, Solitary flexural-gravity waves in three dimensions. Philos. Trans. R. Soc. A 376(2129), 20170345 (2018)

    Google Scholar 

  64. J.-M. Vanden-Broeck, Elevation solitary waves with surface tension. Phys. Fluids A 3, 2659–2663 (1991)

    Article  MATH  Google Scholar 

  65. J.-M. Vanden-Broeck, Gravity-Capillary Free-Surface Flows (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  66. J.-M. Vanden-Broeck, F. Dias, Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549–555 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  67. J.-M. Vanden-Broeck, E.I. Părău, Two-dimensional generalised solitary waves and periodic waves under an ice sheet. Philos. Trans. R. Soc. A. 369, 2957–2972 (2011)

    Article  MATH  Google Scholar 

  68. Z. Wang, P.A. Milewski, Dynamics of gravity-capillary solitary waves in deep water. J. Fluid Mech. 708, 480–501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Z. Wang, J.-M. Vanden-Broeck, Multilump symmetric and nonsymmetric gravity-capillary solitary waves in deep water. SIAM J. Appl. Math. 75, 978–998 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. Z. Wang, J.-M. Vanden-Broeck, P.A. Milewski, Two-dimensional flexural-gravity waves of finite amplitude in deep water. IMA J. Appl. Math. 78, 750–761 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Z. Wang, P.A. Milewski, J.-M. Vanden-Broeck, Computation of three-dimensional flexural-gravity solitary waves in arbitrary depth. Proc. IUTAM 11, 119–129 (2014)

    Article  Google Scholar 

  72. Z. Wang, J.-M. Vanden-Broeck, P.A. Milewski, Asymmetric gravity-capillary solitary waves on deep water. J. Fluid Mech. 759, R2 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. X. Xia, H.T. Shen, Nonlinear interaction of ice cover with shallow water waves in channels. J. Fluid Mech. 467, 259–268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  74. T.S. Yang, T.R. Akylas, On asymmetric gravity-capillary solitary waves. J. Fluid Mech. 330, 215–232 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, for the support and hospitality during the 2017 Nonlinear Water Waves—an Interdisciplinary Interface workshop. This work was partially supported by EPSRC grants EP/J019305/1 for Emilian I. Părău and EP/J019569/1 for Jean-Marc Vanden-Broeck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilian I. Părău .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Părău, E.I., Vanden-Broeck, JM. (2019). Gravity-Capillary and Flexural-Gravity Solitary Waves. In: Henry, D., Kalimeris, K., Părău, E., Vanden-Broeck, JM., Wahlén, E. (eds) Nonlinear Water Waves . Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-33536-6_11

Download citation

Publish with us

Policies and ethics