Skip to main content

Nonlinear Wave Interaction in Coastal and Open Seas: Deterministic and Stochastic Theory

  • Chapter
  • First Online:
Nonlinear Water Waves

Abstract

We review the theory of wave interaction in finite and infinite depth. Both of these strands of water-wave research begin with the deterministic governing equations for water waves, from which simplified equations can be derived to model situations of interest, such as the mild slope and modified mild slope equations, the Zakharov equation, or the nonlinear Schrödinger equation. These deterministic equations yield accompanying stochastic equations for averaged quantities of the sea-state, like the spectrum or bispectrum. We discuss several of these in depth, touching on recent results about the stability of open ocean spectra to inhomogeneous disturbances, as well as new stochastic equations for the nearshore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, the ω i satisfy the dispersion relation of the NLS rather than the linear deep-water dispersion relation in (3.3).

  2. 2.

    “Over 2000 wave spectra were measured; about […] 121 corresponded to “ideal” stationary and homogeneous wind conditions.” p. 10.

References

  1. T.A. Adcock, P.H. Taylor, The physics of anomalous (‘rogue’) ocean waves. Rep. Prog. Phys. 77, 105901 (2014)

    Article  Google Scholar 

  2. Y. Agnon, A. Sheremet, Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79–99 (1997)

    Article  MATH  Google Scholar 

  3. Y. Agnon, A. Sheremet, Stochastic evolution models for nonlinear gravity waves over uneven topography. Adv. Coast. Ocean Eng. 6, 103–133 (2000)

    Article  Google Scholar 

  4. Y. Agnon, A. Sheremet, J. Gonsalves, M. Stiassnie, A unidirectional model for shoaling gravity waves. Coast. Eng. 20, 29–58 (1993)

    Article  Google Scholar 

  5. I.E. Alber, The effects of randomness on the stability of two-dimensional surface wavetrains. Proc. Roy. Soc. A 363, 525–546 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Andrade, R. Stuhlmeier, M. Stiassnie, On the generalized kinetic equation for surface gravity waves, blow-up and its restraint. Fluids 4, 2 (2019)

    Article  Google Scholar 

  7. S.Y. Annenkov, V.I. Shrira, Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181–207 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.Y. Annenkov, V.I. Shrira, Spectral evolution of weakly nonlinear random waves: kinetic description versus direct numerical simulations. J. Fluid Mech. 844, 766–795 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.G. Athanassoulis, G.A. Athanassoulis, M. Ptashnyk, T. Sapsis, Landau damping for the Alber equation and observability of unidirectional wave spectra. Preprint. arXiv:1808.05191

    Google Scholar 

  10. J.A. Battjes, J.P.F.M. Janssen, Energy loss and set-up due to breaking of random waves, in Proceedings of the 16th International Conference of Coastal Engineering (ASCE), vol. 1 (1978), pp. 569–587

    Google Scholar 

  11. F. Becq-Girard, P. Forget, M. Benoit, Non-linear propagation of unidirectional wave fields over varying topography. Coast. Eng. 38, 91–113 (1999)

    Article  Google Scholar 

  12. D.J. Benney, P.G. Saffman, Nonlinear interactions of random waves. Proc. Roy. Soc. London – A 289, 301–321 (1966)

    Article  Google Scholar 

  13. H. Bredmose, Y. Agnon, P.A. Madsen, H.A. Schaffer, Wave transformation models with exact second-order transfer. Eur. J. Mech. B. Fluids 24(6), 659–682 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. P.G. Chamberlain, D. Porter, The modified mild slope equation. J. Fluid Mech. 291, 393–407 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. D.R. Crawford, P.G. Saffman, H.C. Yuen, Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 2(1), 1–16 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Dyachenko, V. Zakharov, Is free-surface hydrodynamics an integrable system? Phys. Lett. A 190(2), 144–148 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Dysthe, K. Trulsen, H.E. Krogstad, H. Socquet-Juglard, Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech. 478, 1–10 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Eldeberky, J.A. Battjes, Parameterization of triad interactions in wave energy models, in Coastal Dynamics‘95, ed. by W.R. Dally, R.B. Zeidler (ASCE, Reston, 1995), pp. 140–148

    Google Scholar 

  19. Y. Eldeberky, J.A. Battjes, Spectral modelling of wave breaking: application to Boussinesq equations. J. Geophys. Res. 101, 1253–1264 (1996)

    Article  Google Scholar 

  20. Y. Eldeberky, P.A. Madsen, Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coast. Eng. 38, 1–24 (1999)

    Article  Google Scholar 

  21. S. Elgar, R.T. Guza, Observations of bispectra of shoaling of surface gravity waves. J. Fluid Mech. 161, 425–448 (1985)

    Article  MATH  Google Scholar 

  22. M.H. Freilich, R.T. Guza, S.L. Elgar, Observations of nonlinear effects in directional spectra of shoaling gravity waves. J. Geophys. Res. Oceans 95, 9645–9656 (1990)

    Article  Google Scholar 

  23. O. Gramstad, Modulational instability in JONSWAP sea states using the alber equation, in 36th International Conference on Ocean, Offshore and Arctic Engineering, V07BT06A051 (ASME, New York, 2017)

    Google Scholar 

  24. O. Gramstad, The Zakharov equation with separate mean flow and mean surface. J. Fluid Mech. 740, 254–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. O. Gramstad, M. Stiassnie, Phase-averaged equation for water waves. J. Fluid Mech. 718, 280–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. O. Gramstad, Y. Agnon, M. Stiassnie, The localized Zakharov equation: derivation and validation. Eur. J. Mech. B. Fluids 30, 137–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech. 12, 481–500 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Hasselmann, W. Munk, G. MacDonald, M. Rosenblatt, Time series analysis, in Bispectra of Ocean Waves (1963), pp. 125–139

    Google Scholar 

  29. K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell, H. Walden, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Technical report, Deutsches Hydrographisches Institut, Hamburg (1973)

    Google Scholar 

  30. G. Holloway, Oceanic internal waves are not weak waves. J. Phys. Oceanog. 10, 906–914 (1980)

    Article  Google Scholar 

  31. L. Holthuijsen, Waves in Oceanic and Coastal Waters (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  32. P.A.E.M. Janssen, Nonlinear four-wave interactions and freak waves. J. Phys. Oceanog. 33, 863–884 (2003)

    Article  MathSciNet  Google Scholar 

  33. P.A.E.M. Janssen, The Interaction of Ocean Waves and Wind (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  34. T. Janssen, Nonlinear surface waves over topography. Ph.D. Thesis, University of Delft (2006)

    Google Scholar 

  35. P.A.E.M. Janssen, M. Onorato, The intermediate water depth limit of the Zakharov equation and consequences for wave prediction. J. Phys. Oceanog. 37, 2389–2400 (2007)

    Article  Google Scholar 

  36. T.T. Janssen, T.H.C. Herbers, J.A. Battjes, Generalized evolution equations for nonlinear surface gravity waves over two-dimensional topography. J. Fluid Mech. 552, 393–418 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  38. J.M. Kaihatu, J.T. Kirby, Nonlinear transformation of waves in finite water depth. Phys. Fluids 8, 175–188 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Y.C. Kim, E.J. Powers, Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci. 7, 120–131 (1979)

    Article  Google Scholar 

  40. B. Kinsman, Wind Waves (Dover, New York, 1984)

    Google Scholar 

  41. H. Kofoed-Hansen, J.H. Rasmussen, Modeling of nonlinear shoaling based on stochastic evolution equations. Coast. Eng. 33, 203–232 (1998)

    Article  Google Scholar 

  42. V.P. Krasitskii, On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 1–20 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Liu, D.K.P. Yue, On generalized Bragg scattering of surface waves by bottom ripples. J. Fluid Mech. 356, 297–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. M.S. Longuet-Higgins, On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: a simplified model. Proc. R. Soc. A 347, 311–328 (1976)

    Article  MATH  Google Scholar 

  45. M.S. Longuet-Higgins, O. M. Phillips, Phase velocity effects in tertiary wave interactions. J. Fluid Mech. 12, 333–336 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  46. P.A. Madsen, D.R. Fuhrman, B. Wang, A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487–504 (2006)

    Article  Google Scholar 

  47. H. Mase, J.T. Kirby, Hybrid frequency-domain KdV equation for random wave transformation, in Coastal Engineering 1992: Proceedings of the 23rd International Conference (1992)

    Google Scholar 

  48. C.C. Mei, M. Stiassnie, D.K.-P. Yue, Theory and Applications of Ocean Surface Waves (World Scientific Publishing Co., Singapore, 2005)

    MATH  Google Scholar 

  49. S. Nazarenko, Wave Turbulence. Lecture Notes in Physics (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  50. A.C. Newell, P.J. Aucoin, Semidispersive wave systems. J. Fluid Mech. 49, 593–609 (1971)

    Article  MATH  Google Scholar 

  51. A.C. Newell, B. Rumpf, Wave turbulence. Annu. Rev. Fluid Mech. 43, 59–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Onorato, A. Osborne, R. Fedele, M. Serio, Landau damping and coherent structures in narrow-banded 1 + 1 deep water gravity waves. Phys. Rev. E 67, 46305 (2003)

    Article  Google Scholar 

  53. A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  54. O.M. Phillips, On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions. J. Fluid Mech. 9, 193 (1960)

    Article  MATH  Google Scholar 

  55. W.J. Pierson, Wind generated gravity waves. Adv. Geophys. 2, 93–178 (1955)

    Article  MathSciNet  Google Scholar 

  56. A.C. Radder, On the parabolic equation method for water-wave propagation. J. Fluid Mech. 95, 159–176 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  57. J.H. Rasmussen, M. Stiassnie, Discretization of Zakharov’s equation. Eur. J. Mech. B. Fluids 18, 353–364 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Ribal, A.V. Babanin, I. Young, A. Toffoli, M. Stiassnie, Recurrent solutions of the Alber equation initialized by Joint North Sea Wave Project spectra. J. Fluid Mech. 719, 314–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Salmon, P. Smit, T. Janssen, L. Holthuijsen, A consistent collinear triad approximation for operational wave models. Ocean Model. 104, 203–212 (2016)

    Article  Google Scholar 

  60. L. Shemer, A. Chernyshova, Spatial evolution of an initially narrow-banded wave train. J. Ocean Eng. Mar. Energy 3, 333–351 (2017)

    Article  Google Scholar 

  61. P.B. Smit, T.T. Janssen, The evolution of nonlinear wave statistics through a variable medium. J. Phys. Oceanog. 46, 621–634 (2016)

    Article  Google Scholar 

  62. M. Stiassnie, N. Drimer, Prediction of long forcing waves for harbor agitation studies. J. Waterw. Port Coast. Ocean Eng. 132(3), 166–171 (2006)

    Article  Google Scholar 

  63. M. Stiassnie, O. Gramstad, On Zakharov’s kernel and the interaction of non-collinear wavetrains in finite water depth. J. Fluid Mech. 639, 433–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. M. Stiassnie, L. Shemer, On modification of the Zakharov equation for surface gravity waves. J. Fluid Mech. 143, 47–67 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Stiassnie, L. Shemer, On the interaction of four water waves. Wave Motion 41, 307–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. M. Stiassnie, A. Regev, Y. Agnon, Recurrent solutions of Alber’s equation for random water-wave fields. J. Fluid Mech. 598, 245–266 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. R. Stuhlmeier, M. Stiassnie, Evolution of statistically inhomogeneous degenerate water wave quartets. Philos. Trans. R. Soc. A 376, 20170101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Stuhlmeier, M. Stiassnie, Nonlinear dispersion for ocean surface waves. J. Fluid Mech. 859, 49–58 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Tanaka, On the role of resonant interactions in the short-term evolution of deep-water ocean spectra. J. Phys. Oceanog. 37, 1022–1036 (2007)

    Article  Google Scholar 

  70. L.J. Tick, A non-linear random model of gravity waves I. J. Math. Mech. 8, 643–651 (1959)

    MathSciNet  Google Scholar 

  71. Y. Toledo, Y. Agnon, Stochastic evolution equations with localized nonlinear shoaling coefficients. Eur. J. Mech. B. Fluids 34, 13–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. K. Trulsen, Weakly nonlinear and stochastic properties of ocean wave fields: application to an extreme wave event, in Waves in Geophysical Fluids, CISM International Centre for Mechanical Sciences, vol. 489 (Springer, Vienna, 2006), pp. 49–106

    MATH  Google Scholar 

  73. T. Vrecica, Y. Toledo, Consistent nonlinear stochastic evolution equations for deep to shallow water wave shoaling. J. Fluid Mech. 794, 310–342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. G.B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, Hoboken, 1974)

    MATH  Google Scholar 

  75. Y. Yevnin, Y. Toledo, Reflection source term for the wave action equation. Ocean Model. 127, 40–45 (2018)

    Article  Google Scholar 

  76. H.C. Yuen, B.M. Lake, Nonlinear dynamics of deep-water gravity waves, in Advances in Applied Mechanics (Academic Press, Cambridge, 1982), pp. 68–229

    Google Scholar 

  77. V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  Google Scholar 

  78. V.E. Zakharov, Inverse and direct cascade in a wind-driven surface wave turbulence and wave-breaking, in IUTAM Symposium, Sydney, ed. by M.L. Banner, R.H.J. Grimshaw (Springer, Berlin, 1992), pp. 69–91

    Google Scholar 

  79. V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  80. M. Zijlema, G. Stelling, P.B. Smit, SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 58, 992–1012 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

RS is grateful for the hospitality and support of the Erwin Schrödinger Institute for Mathematics and Physics (ESI), Vienna, Austria, as well as support from a Small Grant from the IMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Stuhlmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stuhlmeier, R., Vrecica, T., Toledo, Y. (2019). Nonlinear Wave Interaction in Coastal and Open Seas: Deterministic and Stochastic Theory. In: Henry, D., Kalimeris, K., Părău, E., Vanden-Broeck, JM., Wahlén, E. (eds) Nonlinear Water Waves . Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-33536-6_10

Download citation

Publish with us

Policies and ethics