Skip to main content

Cooperation Between Auxin and Actin During the Process of Plant Polar Growth

  • Chapter
  • First Online:
The Cytoskeleton

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 24))

Abstract

Polar growth is provided by rapid cell expansion that spatially focuses at the tip. The regulation and maintenance of polar growth requires two important intracellular events: intensive exocytosis in the tip region and a highly dynamic cytoskeleton system. The selective transport of secretory vesicles and their accumulation in the apical region, which is driven by motor proteins that move along actin cables, is critical for plant polar growth. The regulation of vesicle trafficking and actin cytoskeleton turnover is affected by several intracellular components and signaling pathways. Auxin as one of the most important intracellular elements regulating plant growth and development involved in numerous signaling pathways that can affect the organization and dynamics of cell cytoskeleton is a potential candidate as a polar growth regulator. The current knowledge is summarized here in order to highlight the role of auxin in plant polar growth regulation and the cooperation between auxin and the actin cytoskeleton during this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood EG, Anthony RG, Smertenko AP, Reichelt S, Drobak BK, Doonan JH et al (2002) Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell 14(11):2915–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10(1):107–121

    Article  CAS  PubMed  Google Scholar 

  • Andersland JM, Fisher DD, Wymer CL, Cyr RJ, Parthasarathy MV (1994) Characterization of a monoclonal antibody prepared against plant actin. Cell Motil Cytoskeleton 29(4):339–344

    Article  CAS  PubMed  Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J et al (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227(2):618–632

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla M, Gladfelter AS, Kovar DR, Lee W-L (2015) Cytoskeletal dynamics: a view from the membrane. J Cell Biol 209(3):329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17(6):657–665

    Article  CAS  PubMed  Google Scholar 

  • Blanchoin L, Staiger CJ (2010) Plant formins: diverse isoforms and unique molecular mechanism. Biochim Biophys Acta 1803(2):201–206

    Article  CAS  PubMed  Google Scholar 

  • Boavida LC, McCormick S (2007) TECHNICAL ADVANCE: temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52(3):570–582

    Article  CAS  PubMed  Google Scholar 

  • Bosco CD, Dovzhenko A, Liu X, Woerner N, Rensch T, Eismann M et al (2012) The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J 71(5):860–870

    Article  CAS  Google Scholar 

  • Campanoni P, Blatt MR (2006) Membrane trafficking and polar growth in root hairs and pollen tubes. J Exp Bot 58(1):65–74

    Article  PubMed  CAS  Google Scholar 

  • Cao L-J, Zhao M-M, Liu C, Dong H-J, Li W-C, Ren H-Y (2013) LlSR28 is involved in pollen germination by affecting filamentous actin dynamics. Mol Plant 6(4):1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Carol RJ, Dolan L (2002) Building a hair: tip growth in Arabidopsis thaliana root hairs. Philos Trans R Soc Lond B Biol Sci 357(1422):815–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20(7):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Zhao J (2008) Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Plant 134(1):202–215

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu H-M et al (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14(9):2175–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Naramoto S, Robert S, Tejos R, Lofke C, Lin D et al (2012) ABP1 and ROP6 GTPase signaling regulate clathrin-mediated endocytosis in Arabidopsis roots. Curr Biol 22(14):1326–1332. https://doi.org/10.1016/j.cub.2012.05.020

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu H-M (2004) Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16(1):257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AY, Wu H-M (2007) Structural and functional compartmentalization in pollen tubes. J Exp Bot 58(1):75–82. https://doi.org/10.1093/jxb/erl122

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu H-M (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Niroomand S, Zou Y, Wu H-M (2010) A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA 107(37):16390–16395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole RA, Fowler JE (2006) Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9(6):579–588

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhang Y, Zhang D, Chen J, Gao X, Estelle M et al (2015) Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nat Plants 1:15183. https://doi.org/10.1038/nplants.2015.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu H-M (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17(9):2564–2579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deeks MJ, Hussey PJ, Davies B (2002) Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci 7(11):492–498

    Article  CAS  PubMed  Google Scholar 

  • Del Casino C, Li YQ, Moscatelli A, Scali M, Tiezzi A, Cresti M (1993) Distribution of microtubules during the growth of tobacco pollen tubes. Biol Cell 79(2):125–132

    Article  Google Scholar 

  • Derksen J, Rutten T, Lichtscheidl I, De Win A, Pierson E, Rongen G (1995) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188(3–4):267–276

    Article  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441. https://doi.org/10.1038/nature03543

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L et al (2005b) Plant development is regulated by a family of auxin receptor F box. Proteins 9(1):109–119

    CAS  Google Scholar 

  • Di D-W, Zhang C, Guo G-Q (2015) Involvement of secondary messengers and small organic molecules in auxin perception and signaling. Plant Cell Rep 34(6):895–904

    Article  CAS  PubMed  Google Scholar 

  • Di Donato M (2017) Regulation of ABCB-mediated auxin transport by HSP90 and TWISTED DWARF1

    Google Scholar 

  • Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N et al (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Zhang S, Liu J, Liu S, Su H (2018a) Arabidopsis FIM4 and FIM5 regulates the growth of root hairs in an auxin-insensitive way. Plant Signal Behav 13(9):e1473667. https://doi.org/10.1080/15592324.2018.1473667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Zhang S, Liu J, Liu S, Su H (2018b) Arabidopsis FIM4 and FIM5 regulates the growth of root hairs in an auxin-insensitive way. Plant Signal Behav 13(9):e1473667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong C-H, Kost B, Xia G, Chua N-H (2001a) Molecular identification and characterization of the Arabidopsis AtADF1, AtADF5 and AtADF6 genes. Plant Mol Biol 45(5):517–527

    Article  CAS  PubMed  Google Scholar 

  • Dong C-H, Xia G-X, Hong Y, Ramachandran S, Kost B, Chua N-H (2001b) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13(6):1333–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos Maraschin F, Memelink J, Offringa R (2009) Auxin-induced, SCFTIR1-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59(1):100–109

    Article  CAS  Google Scholar 

  • Dowd PE, Coursol S, Skirpan AL, Kao T-H, Gilroy S (2006) Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 18(6):1438–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Tominaga M (2018) Actin–myosin XI: an intracellular control network in plants. Biochem Biophys Res Commun 506(2):403–408

    Article  CAS  PubMed  Google Scholar 

  • Durst S, Nick P, Maisch J (2013) Nicotiana tabacum actin-depolymerizing factor 2 is involved in actin-driven, auxin-dependent patterning. J Plant Physiol 170(12):1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Hou J, Chen X, Chaudhry F, Staiger CJ, Ren H (2004) Identification and characterization of a Ca2+-dependent actin filament-severing protein from lily pollen. Plant Physiol 136(4):3979–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feijó J, Sainhas J, Hackett G, Kunkel J, Hepler P (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144(3):483–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Feijó JA, Costa SS, Prado AM, Becker JD, Certal AC (2004) Signalling by tips. Curr Opin Plant Biol 7(5):589–598

    Article  PubMed  CAS  Google Scholar 

  • Feng X-L, Ni W-M, Elge S, Mueller-Roeber B, Xu Z-H, Xue H-W (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61(12):215–226

    Article  CAS  PubMed  Google Scholar 

  • Foissner I, Grolig F, Obermeyer G (2002) Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton: effects of calyculin A and okadaic acid. Protoplasma 220(1–2):0001–0015

    Article  CAS  Google Scholar 

  • Franklin-Tong VE, Drobak BK, Allan AC, Watkins PA, Trewavas AJ (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1, 4, 5-trisphosphate. Plant Cell 8(8):1305–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y (2015) The cytoskeleton in the pollen tube. Curr Opin Plant Biol 28:111–119

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152(5):1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis. Organogenesis 14(4):777–794

    CAS  Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120(5):687–700

    Article  CAS  PubMed  Google Scholar 

  • Galway ME, Heckman JW Jr, Schiefelbein JW (1997) Growth and ultrastructure of Arabidopsis root hairs: the rhd3 mutation alters vacuole enlargement and tip growth. Planta 201(2):209–218. https://doi.org/10.1007/bf01007706

    Article  CAS  PubMed  Google Scholar 

  • Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B et al (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14(10):4238–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A et al (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44(2):179–194

    Article  CAS  PubMed  Google Scholar 

  • Geisler M, Wang B, Zhu J (2014) Auxin transport during root gravitropism: transporters and techniques. Plant Biol (Stuttg) 16:50–57

    Article  Google Scholar 

  • Geitmann A, Emons AM (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198(3):218–245

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5(2):56–60

    Article  CAS  PubMed  Google Scholar 

  • Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7(10):713

    Article  CAS  PubMed  Google Scholar 

  • Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397(6717):350

    Article  CAS  PubMed  Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth: coping with mechanical obstacles involves the. Cytoskeleton 226(2):405–416

    CAS  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF TIR1-dependent degradation of AUX/IAA. Proteins 414(6861):271

    CAS  Google Scholar 

  • Griffing LR, Gao HT, Sparkes I (2014) ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. Front Plant Sci 5:218. https://doi.org/10.3389/fpls.2014.00218

    Article  PubMed  PubMed Central  Google Scholar 

  • Grones P, Friml J (2015) Auxin transporters and binding proteins at a glance. J Cell Sci 128(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460

    Article  CAS  PubMed  Google Scholar 

  • Helling D, Possart A, Cottier S, Klahre U, Kost B (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18(12):3519–3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepler PK, Winship LJ (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57(1):79–92

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17(1):159–187

    Article  CAS  PubMed  Google Scholar 

  • Huang S, McDowell JM, Weise MJ, Meagher RB (1996) The Arabidopsis profilin gene family (evidence for an ancient split between constitutive and pollen-specific profilin genes). Plant Physiol 111(1):115–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Robinson RC, Gao LY, Matsumoto T, Brunet A, Blanchoin L et al (2005) Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. Plant Cell 17(2):486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Kim CM, Xuan YH, Liu J, Kim TH, Kim BK et al (2013) Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). Planta 237(5):1227–1239. https://doi.org/10.1007/s00425-013-1838-8

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Liang W, Sturrock CJ, Pandey BK, Giri J, Mairhofer S et al (2018) Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nat Commun 9(1):2346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones MA, Shen J-J, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14(4):763–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM et al (2009) Auxin transport through non-hair cells sustains root-hair. Development 11(1):78

    CAS  Google Scholar 

  • Kandasamy MK, Gilliland LU, McKinney EC, Meagher RB (2001) One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13(7):1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446. https://doi.org/10.1038/nature03542

    Article  CAS  PubMed  Google Scholar 

  • Ketelaar T, Allwood EG, Anthony R, Voigt B, Menzel D, Hussey PJ (2004) The actin-interacting protein AIP1 is essential for actin organization and plant. Development 14(2):145–149

    CAS  Google Scholar 

  • Kiefer CS, Claes AR, Nzayisenga J-C, Pietra S, Stanislas T, Hüser A et al (2015) Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity. Development 142(1):151–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kijima ST, Staiger CJ, Katoh K, Nagasaki A, Ito K, Uyeda TQP (2018) Arabidopsis vegetative actin isoforms, AtACT2 and AtACT7, generate distinct filament arrays in living plant cells. Sci Rep 8(1):4381. https://doi.org/10.1038/s41598-018-22707-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klahre U, Friederich E, Kost B, Louvard D, Chua N-H (2000) Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122(1):35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473

    Article  CAS  PubMed  Google Scholar 

  • Kohno T, Shimmen T (1988) Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J Cell Biol 106(5):1539–1543

    Article  CAS  PubMed  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S et al (2010) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29(2):129–136

    Article  CAS  Google Scholar 

  • Korasick DA, Westfall CS, Lee SG, Nanao MH, Dumas R, Hagen G et al (2014) Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc Natl Acad Sci USA 111(14):5427–5432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovar DR, Drøbak BK, Staiger CJ (2000) Maize profilin isoforms are functionally distinct. Plant Cell 12(4):583–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroeger JH, Daher FB, Grant M, Geitmann A (2009) Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97(7):1822–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laitiainen E, Nieminen KM, Vihinen H, Raudaskoski M (2002) Movement of generative cell and vegetative nucleus in tobacco pollen tubes is dependent on microtubule cytoskeleton but independent of the synthesis of callose plugs. Sex Plant Reprod 15(4):195–204

    Article  CAS  Google Scholar 

  • Lan Y, Liu X, Fu Y, Huang S (2018) Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet 14(11):e1007789. https://doi.org/10.1371/journal.pgen.1007789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Liang W, Zhang X, Ren H, Hu J, Bennett MJ et al (2014a) Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc Natl Acad Sci USA 111(28):10377–10382. https://doi.org/10.1073/pnas.1401680111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Liang W, Zhang X, Ren H, Hu J, Bennett MJ et al (2014b) Rice actin-binding protein RMD is a key link in the auxin–actin regulatory loop that controls cell growth. Proc Natl Acad Sci USA 111(28):10377–10382. https://doi.org/10.1073/pnas.1401680111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Blanchoin L, Staiger CJ (2015) Signaling to actin stochastic dynamics. Annu Rev Plant Biol 66:415–440

    Article  CAS  PubMed  Google Scholar 

  • Li S, Dong H, Pei W, Liu C, Zhang S, Sun T et al (2017) Ll FH 1-mediated interaction between actin fringe and exocytic vesicles is involved in pollen tube tip growth. New Phytol 214(2):745–761

    Article  CAS  PubMed  Google Scholar 

  • Li G, Yang X, Zhang X, Song Y, Liang W, Zhang D (2018a) Rice morphology determinant-mediated actin filament organization contributes to pollen tube growth. Plant Physiol 177(1):255–270. https://doi.org/10.1104/pp.17.01759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen S, Wang X, Shi C, Liu H, Yang J et al (2018b) Hydrogen sulfide disturbs actin polymerization via S-sulfhydration resulting in stunted root hair growth. Plant Physiol 178(2):936–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Qu X, Jiang Y, Chang M, Zhang R, Wu Y et al (2015) Profilin regulates apical actin polymerization to control polarized pollen tube growth. Mol Plant 8(12):1694–1709

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhang Y, Ren H (2018a) Actin polymerization mediated by AtFH5 directs the polarity establishment and vesicle trafficking for pollen germination in Arabidopsis. Mol Plant 11(11):1389–1399. https://doi.org/10.1016/j.molp.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhang Y, Ren H (2018b) Actin polymerization mediated by AtFH5 directs the polarity establishment and vesicle trafficking for pollen germination in Arabidopsis. Mol Plant 11(11):1389–1399

    Article  CAS  PubMed  Google Scholar 

  • Lord E (2000) Adhesion and cell movement during pollination: cherchez la femme. Trends Plant Sci 5(9):368–373

    Article  CAS  PubMed  Google Scholar 

  • Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Lovy-Wheeler A, Kunkel JG, Allwood EG, Hussey PJ, Hepler PK (2006) Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 18(9):2182–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciver SK, Hussey PJ (2002) The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3(5):reviews3007. 3001

    Article  Google Scholar 

  • Madison SL, Buchanan ML, Glass JD, McClain TF, Park E, Nebenführ A (2015) Class XI myosins move specific organelles in pollen tubes and are required for normal fertility and pollen tube growth in Arabidopsis. Plant Physiol 169(3):1946–1960. https://doi.org/10.1104/pp.15.01161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisch J, Nick P (2007) Actin is involved in auxin-dependent patterning. Plant Physiol 143(4):1695–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Hülskamp M (2003a) Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15(7):1632–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hülskamp M (2003b) Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130(14):3137–3146

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, An Y, Huang S, McKinney EC, Meagher RB (1996) The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111(3):699–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney EC, Kandasamy MK, Meagher RB (2001) Small changes in the regulation of one Arabidopsis profilin isovariant, PRF1, alter seedling development. Plant Cell 13(5):1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messerli M, Robinson KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci 110(11):1269–1278

    CAS  PubMed  Google Scholar 

  • Michalko J, Dravecka M, Bollenbach T, Friml J (2015) Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene. F1000Res 4:1104. https://doi.org/10.12688/f1000research.7143.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller DD, De Ruijter NC, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17(2):141–154

    Article  CAS  Google Scholar 

  • Monteiro D, Coelho PC, Rodrigues C, Camacho L, Quader H, Malho R (2005) Modulation of endocytosis in pollen tube growth by phosphoinositides and phospholipids. Protoplasma 226(1–2):31–38

    Article  CAS  PubMed  Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95(11):6181–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J et al (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10(4):e1001299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanao MH, Vinos-Poyo T, Brunoud G, Thévenon E, Mazzoleni M, Mast D et al (2014) Structural basis for oligomerization of auxin transcriptional regulators. Nat Commun 5:3617 (Supplementary information). https://doi.org/10.1038/ncomms4617. https://www.nature.com/articles/ncomms4617

  • Nebenführ A, Dixit R (2018) Kinesins and myosins: molecular motors that coordinate cellular functions in plants. Annu Rev Plant Biol 69:329–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nick P, Han M-J, An G (2009) Auxin stimulates its own transport by shaping actin filaments. Plant Physiol 151(1):155–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8(9):R196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ojangu E-L, Järve K, Paves H, Truve E (2007) Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma 230(3–4):193–202

    Article  CAS  PubMed  Google Scholar 

  • Ono S, Mohri K, Ono K (2004) Microscopic evidence that actin-interacting protein 1 actively disassembles actin-depolymerizing factor/cofilin-bound actin filaments. J Biol Chem 279(14):14207–14212

    Article  CAS  PubMed  Google Scholar 

  • Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof Y-D, Kleine-Vehn J et al (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251. https://doi.org/10.1038/nature03633

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Chen J, Yang Z (2015) Auxin regulation of cell polarity in plants. Curr Opin Plant Biol 28:144–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paponov IA, Dindas J, Krol E, Friz T, Budnyk V, Teale W et al (2018) Auxin-induced plasma membrane depolarization is regulated by auxin transport and not by AUXIN BINDING PROTEIN1. Front Plant Sci 9:1953. https://doi.org/10.3389/fpls.2018.01953

    Article  PubMed  Google Scholar 

  • Park E, Nebenfuhr A (2013) Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLoS One 8(10):e76745. https://doi.org/10.1371/journal.pone.0076745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parton R, Fischer-Parton S, Watahiki M, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114(14):2685–2695

    CAS  PubMed  Google Scholar 

  • Paul A, Pollard T (2008) The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation. Curr Biol 18(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Pei W, Du F, Zhang Y, He T, Ren H (2012) Control of the actin cytoskeleton in root hair development. Plant Sci 187:10–18

    Article  CAS  PubMed  Google Scholar 

  • Pellegrin S, Mellor H (2005) The Rho family GTPase Rif induces filopodia through mDia2. Curr Biol 15(2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol 146(3):1109–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Dolja VV (2010) Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. Plant Cell 22(6):1883–1897. https://doi.org/10.1105/tpc.110.076315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peremyslov VV, Mockler TC, Filichkin SA, Fox SE, Jaiswal P, Makarova KS et al (2011) Expression, splicing, and evolution of the myosin gene family in plants. Plant Physiol 155(3):1191–1204. https://doi.org/10.1104/pp.110.170720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullin–RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9 (Supplementary information). https://doi.org/10.1038/nrm1547. https://www.nature.com/articles/nrm1547

    Article  CAS  PubMed  Google Scholar 

  • Pierson E, Miller D, Callaham D, Van Aken J, Hackett G, Hepler P (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174(1):160–173

    Article  CAS  PubMed  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16(5):553–560

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Mooseker MS (1981) Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol 88(3):654–659

    Article  CAS  PubMed  Google Scholar 

  • Qin T, Liu X, Li J, Sun J, Song L, Mao T (2014) Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell 26(1):325–339. https://doi.org/10.1105/tpc.113.119768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Zhang H, Xie Y, Wang J, Chen N, Huang S (2013) Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25(5):1803–1817. https://doi.org/10.1105/tpc.113.110940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana-Cataño CA, Staiger CJ, Zhang W (2016) In vitro motility of actin filaments powered by plant myosins XI

    Google Scholar 

  • Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50(3):514–528

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran S, Christensen HE, Ishimaru Y, Dong C-H, Chao-Ming W, Cleary AL et al (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol 124(4):1637–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raudaskoski M, Åström H, Laitiainen E (2001) Pollen tube cytoskeleton: structure and function. J Plant Growth Regul 20(2):113–130

    Article  CAS  Google Scholar 

  • Reddy AS, Day IS (2001) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2(7):research0024. 0021

    Article  Google Scholar 

  • Ren H, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230(3–4):171–182

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringli C, Baumberger N, Diet A, Frey B, Keller B (2002) ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol 129(4):1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P et al (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143(1):111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romagnoli S, Cai G, Cresti M (2003) In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules. Plant Cell 15(1):251–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier M-F (2004) Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119(3):419–429

    Article  CAS  PubMed  Google Scholar 

  • Rück A, Palme K, Venis MA, Napier RM, Felle HH (1993) Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J 4(1):41–46

    Article  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M et al (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12(2):198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90(1):259–289. https://doi.org/10.1152/physrev.00036.2009

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N et al (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107(19):8569–8574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC (2016) Leaf epinasty and auxin: a biochemical and molecular overview. Plant Sci 253:187–193

    Article  CAS  PubMed  Google Scholar 

  • Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136(4):3968–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295

    Article  CAS  PubMed  Google Scholar 

  • Sparkes I (2011) Recent advances in understanding plant myosin function: life in the fast lane. Mol Plant 4(5):805–812

    Article  CAS  PubMed  Google Scholar 

  • Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61(7):1969–1986

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Feckler C, Palme K, Christian M, Böttger M, Lüthen H (2001) The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J 27(6):591–599

    Article  CAS  PubMed  Google Scholar 

  • Stephan OOH (2017) Actin fringes of polar cell growth. J Exp Bot 68(13):3303–3320. https://doi.org/10.1093/jxb/erx195

    Article  CAS  PubMed  Google Scholar 

  • Stephan O, Cottier S, Fahlén S, Montes-Rodriguez A, Sun J, Eklund DM et al (2014) RISAP is a TGN-associated RAC5 effector regulating membrane traffic during polar cell growth in tobacco. Plant Cell 26(11):4426–4447. https://doi.org/10.1105/tpc.114.131078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Zhu J, Cai C, Pei W, Wang J, Dong H et al (2012a) FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe. Plant Cell 24(11):4539–4554. https://doi.org/10.1105/tpc.112.099358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Zhu J, Cai C, Pei W, Wang J, Dong H et al (2012b) FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe. Plant Cell 24(11):4539–4554. https://doi.org/10.1105/tpc.112.099358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Feng H, Chao X, Ding X, Nan Q, Wen C et al (2017) Fimbrins 4 and 5 act synergistically during polarized pollen tube growth to ensure fertility in Arabidopsis. Plant Cell Physiol 58(11):2006–2016. https://doi.org/10.1093/pcp/pcx138

    Article  CAS  PubMed  Google Scholar 

  • Suarez C, Carroll RT, Burke TA, Christensen JR, Bestul AJ, Sees JA et al (2015) Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex. Dev Cell 32(1):43–53

    Article  CAS  PubMed  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 39:539–557

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M et al (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640. https://doi.org/10.1038/nature05731

    Article  CAS  PubMed  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48(1):461–491

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Kojima H, Yokota E, Nakamori R, Anson M, Shimmen T et al (2012) Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI. J Biol Chem 287(36):30711–30718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traas J, Braat P, Emons A, Meekes H, Derksen J (1985) Microtubules in root hairs. J Cell Sci 76(1):303–320

    CAS  PubMed  Google Scholar 

  • Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T et al (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107(15):6894–6899. https://doi.org/10.1073/pnas.0911482107

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda H, Tamura K, Hara-Nishimura I (2015) Functions of plant-specific myosin XI: from intracellular motility to plant postures. Curr Opin Plant Biol 28:30–38

    Article  CAS  PubMed  Google Scholar 

  • Van Gestel K, Slegers H, Von Witsch M, Samaj J, Baluska F, Verbelen JP (2003) Immunological evidence for the presence of plant homologues of the actin-related protein Arp3 in tobacco and maize: subcellular localization to actin-enriched pit fields and emerging root hairs. Protoplasma 222(1–2):45–52. https://doi.org/10.1007/s00709-003-0004-8

    Article  CAS  PubMed  Google Scholar 

  • van Gisbergen PA, Li M, Wu S-Z, Bezanilla M (2012) Class II formin targeting to the cell cortex by binding PI (3, 5) P2 is essential for polarized growth. J Cell Biol 198(2):235–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaškebová L, Šamaj J, Ovečka M (2017) Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development. Ann Bot 122(5):889–901

    PubMed Central  Google Scholar 

  • Vidali L, Hepler PK (1997) Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton 36(4):323–338. https://doi.org/10.1002/(sici)1097-0169(1997)36:4<323::Aid-cm3>3.0.Co;2-6

    Article  CAS  PubMed  Google Scholar 

  • Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12(8):2534–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali L, Rounds CM, Hepler PK, Bezanilla M (2009a) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4(5):e5744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidali L, van Gisbergen PA, Guerin C, Franco P, Li M, Burkart GM et al (2009b) Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc Natl Acad Sci USA 106(32):13341–13346. https://doi.org/10.1073/pnas.0901170106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalobos LIAC, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L et al (2012) A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8(5):477

    Article  PubMed Central  CAS  Google Scholar 

  • Voigt B, Timmers AC, Šamaj J, Müller J, Baluška F, Menzel D (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84(6):595–608

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S et al (2013) Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25(1):202–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Otegui MS, Spalding EP (2010a) The ER-localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. Plant Cell 22(10):3295–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Yan J, Zhang R, Qu X, Ren S, Chen N et al (2010b) Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. Plant Cell 22(11):3745–3763. https://doi.org/10.1105/tpc.110.080283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Xie Y, Zhang J, Ren Y, Zhang X, Wang J et al (2015) VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell 27(10):2829–2845. https://doi.org/10.1105/tpc.15.00581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, Hussey PJ et al (2007) ACTIN BINDING PROTEIN29 from Lilium pollen plays an important role in dynamic actin remodeling. Plant Cell 19(6):1930–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen J-G, Wu M-J et al (2010) Cell surface-and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143(1):99–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H et al (2014) Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343(6174):1025–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (1998) Signaling tip growth in plants. Curr Opin Plant Biol 1(6):525–530

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Ren S, Zhang X, Gao M, Ye S, Qi Y et al (2011) BENT UPPERMOST INTERNODE1 encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell 23(2):661–680. https://doi.org/10.1105/tpc.110.081802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S et al (2009) Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21(12):3868–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi K, Guo C, Chen D, Zhao B, Yang B, Ren H (2005) Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol 138(2):1071–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Qu X, Bao C, Khurana P, Wang Q, Xie Y et al (2010) Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 22(8):2749–2767. https://doi.org/10.1105/tpc.110.076257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xiao Y, Du F, Cao L, Dong H, Ren H (2011a) Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. New Phytol 190(3):667–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Y, Tan H, Wang Y, Li G, Liang W et al (2011b) RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell 23(2):681–700. https://doi.org/10.1105/tpc.110.081349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Zhang R, Qu X, Huang S (2016) Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube. J Exp Bot 67(11):3407–3417. https://doi.org/10.1093/jxb/erw160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Xie Y, Jiang Y, Qu X, Huang S (2013) Arabidopsis actin-depolymerizing factor7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. Plant Cell 25(9):3405–3423. https://doi.org/10.1105/tpc.113.117820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Shi H, Chen B, Zhang R, Huang S, Fu Y (2015) Arabidopsis RIC1 severs actin filaments at the apex to regulate pollen tube growth. Plant Cell 27(4):1140–1161. https://doi.org/10.1105/tpc.114.135400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Geisler MJ (2015) Keeping it all together: auxin–actin crosstalk in plant development. J Exp Bot 66(16):4983–4998

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhang Y, Kang E, Xu Q, Wang M, Rui Y et al (2013) MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25(3):851–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zwiewka M, Sovero V, di Donato M, Ge P, Oehri J et al (2016) TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell 28(4):930–948. https://doi.org/10.1105/tpc.15.00726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank J. Zhu for discussion and comments. Work in our lab is currently funded by the Swiss National Funds (project 31003A_165877/1) and the European Space Association (CORA-GBF project LIRAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Geisler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Geisler, M. (2019). Cooperation Between Auxin and Actin During the Process of Plant Polar Growth. In: Sahi, V., Baluška, F. (eds) The Cytoskeleton. Plant Cell Monographs, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-33528-1_7

Download citation

Publish with us

Policies and ethics