Skip to main content

A Concept for the Extension of the Assumed Stress Finite Element Method to Hyperelasticity

  • Chapter
  • First Online:
Novel Finite Element Technologies for Solids and Structures

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 597))

Abstract

The proposed work extends the well-known assumed stress elements to the framework of hyperelasticity. In order to obtain the constitutive relationship, a nonlinear set of equations is solved implicitly on element level. A numerical verification, where two assumed stress elements are compared to classical enhanced assumed strain elements, depicts the reliability and efficiency of the proposed concept. This work is closely related to the publication of Viebahn et al. (2019)

The financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is gratefully acknowledged - 255432295.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andelfinger, U., & Ramm, E. (1993). EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. International Journal for Numerical Methods in Engineering, 36, 1311–1337.

    Article  Google Scholar 

  • Atluri, S. N. (1973). On the hybrid stress finite element model in incremental analysis of large deflection problems. International Journal of Solids and Structures, 9, 1188–1191.

    Article  Google Scholar 

  • Babuška, I. (1973). The finite element method with Lagrangian multipliers. Numerische Mathematik, 20(3), 179–192.

    Article  MathSciNet  Google Scholar 

  • Bischoff, M., Ramm, E., & Braess, D. (1999). A class of equivalent enhanced assumed strain and hybrid stress finite elements. Computational Mechanics, 22, 443–449.

    Article  Google Scholar 

  • Brezzi, F. (1974). On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 8(2), 129–151.

    Article  MathSciNet  Google Scholar 

  • de Souza Neto, E. A., Peric, D., Huang, G. C., & Owen, D. R. J. (1995). Remarks on the stability of enhanced strain elements in finite elasticity and elastoplasticity. Communications in Numerical Methods in Engineering, 11(11), 951–961.

    Google Scholar 

  • Djoko, J. K., Lamichhane, B. P., Reddy, B. P., & Wohlmuth, B. I. (2006). Conditions for equivalence between the Hu-Washizu and related formulations, and computational behavior in the incompressible limit. Computer Methods in Applied Mechanics and Engineering, 195, 4161–4178.

    Article  MathSciNet  Google Scholar 

  • Fraejis de Veubeke, B. (1965). Stress analysis, chapter Displacement ant equilibrium models in finite element methods (pp. 145–197). John Wiley & Sons.

    Google Scholar 

  • Glaser, S., & Armero, F. (1997). On the formulation of enhanced strain finite elements in finite deformations. Engineering Computations, 14, 759–791.

    Article  Google Scholar 

  • Hellinger, E. (1913). Encyklopädie der mathematischen wissenschaften mit einschluss ihrer anwendungen. In Encyklop\(\ddot{d}\)ie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 4.

    Google Scholar 

  • Hu, H. C. (1955). On some variational principles in the theory of elasticity and the theory of plasticity. Science Sinica, 4, 33–54.

    MATH  Google Scholar 

  • Krischok, A., & Linder, C. (2016). On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. International Journal for Numerical Methods in Engineering, 106, 278–297.

    Article  MathSciNet  Google Scholar 

  • Ladyzhenskaya, O. (1969). The mathematical theory of viscous incompressible flow (Vol. 76). Gordon and Breach New York.

    Google Scholar 

  • Ogden, R. W. (1984). Non-linear elastic deformations. Dover Publications.

    Google Scholar 

  • Pantuso, D., & Bathe, K.-J. (1995). A four-node quadrilateral mixed-interpolated element for solids and fluids. Mathematical Models and Methods in Applied Sciences (M3AS), 5(8), 1113–1128.

    Google Scholar 

  • Pian, T. H. H. (1964). Derivation of element stiffness matrices by assumed stress distribution. AIAA Journal, 20, 1333–1336.

    Article  Google Scholar 

  • Pian, T. H. H., & Chen, D.-P. (1982). Alternative ways for formulation of hybrid stress elements. International Journal for Numerical Methods in Engineering, 18, 1679–1684.

    Article  Google Scholar 

  • Pian, T. H. H., & Sumihara, K. (1984). A rational approach for assumed stress finite elements. International Journal for Numerical Methods in Engineering, 20, 1685–1695.

    Article  Google Scholar 

  • Pian, T. H. H., & Tong, P. (1986). Relations between incompatible displacement model and hybrid stress model. International Journal for Numerical Methods in Engineering, 22, 173–181.

    Article  MathSciNet  Google Scholar 

  • Prange, G. (1916). Das Extremum der Formänderungsarbeit. Technische Hochschule Hannover: Habilitationsschrift.

    Google Scholar 

  • Reissner, E. (1950). On a variational theorem in elasticity. Journal of Mathematical Physics, 29, 90–95.

    Article  MathSciNet  Google Scholar 

  • Schröder, J., Klaas, O., Stein, E., & Miehe, C. (1997). A physically nonlinear dual mixed finite element formulation. Computer Methods in Applied Mechanics and Engineering, 144, 77–92.

    Article  Google Scholar 

  • Schröder, J., Igelbüscher, M., Schwarz, A., & Starke, G. (2017). A Prange-Hellinger-Reissner type finite element formulation for small strain elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 317, 400–418.

    Article  MathSciNet  Google Scholar 

  • Simo, J. C., & Rifai, M. S. (1990). A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29, 1595–1638.

    Article  MathSciNet  Google Scholar 

  • Simo, J. C., Armero, F., & Taylor, R. L. (1993). Assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer Methods in Applied Mechanics and Engineering, 110, 359–386.

    Article  MathSciNet  Google Scholar 

  • Simo, J. C., Kennedy, J. G., & Taylor, R. L. (1989). Complementary mixed finite element formulations for elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 74, 177–206.

    Article  MathSciNet  Google Scholar 

  • Viebahn, N., Schröder, J., & Wriggers, P. (2019). An extension of assumed stress finite elements to a general hyperelastic framework. Advanced Modeling and Simulation in Engineering Sciences, 6, 9. https://doi.org/10.1186/s40323-org-0133-7.

  • Wall, W. A., Bischoff, M., & Ramm, E. (2000). A deformation dependent stabilization technique, exemplified by eas elements at large strains. Computer Methods in Applied Mechanics and Engineering, 188, 859–871.

    Article  Google Scholar 

  • Washizu, K. (1955, March). On the variational principles of elasticity and plasticity. Technical Report 25–18, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Wilson, E. L., Taylor, R. L., Doherty, W. P., & Ghabaussi, J. (1973). Incompatible displacement models. In S. J. Fenves et al. (Eds.), Numerical and computer methods in structural mechanics (pp. 43–57). New York: Academic Press

    Google Scholar 

  • Wriggers, P. (2009). Mixed finite element methods - theory and discretization. In C. Carstensen, & P. Wriggers (Eds.), Mixed finite element technologies, volume 509 of CISM International Centre for Mechanical Sciences. Springer.

    Google Scholar 

  • Wriggers, P., & Reese, S. (1996). A note on enhanced strain methods for large deformations. Computer Methods in Applied Mechanics and Engineering, 135, 201–209.

    Article  Google Scholar 

  • Yeo, S. T., & Lee, B. C. (1996). Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle. International Journal for Numerical Methods in Engineering, 39, 3083–3099.

    Article  MathSciNet  Google Scholar 

  • Zienkiewicz, O. C., Qu, S., Taylor, R. L., & Nakazawa, S. (1986). The patch test for mixed formulations. International Journal for Numerical Methods in Engineering, 23, 1873–1883.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Viebahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viebahn, N., Schröder, J., Wriggers, P. (2020). A Concept for the Extension of the Assumed Stress Finite Element Method to Hyperelasticity. In: Schröder, J., de Mattos Pimenta, P. (eds) Novel Finite Element Technologies for Solids and Structures. CISM International Centre for Mechanical Sciences, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-030-33520-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33520-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33519-9

  • Online ISBN: 978-3-030-33520-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics