Skip to main content

Dynamic Patterns for Cloud Application Life-Cycle Management

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 96)


Cloud applications are by nature dynamic and must react to variations in use, and evolve to adopt new Cloud services, and exploit new capabilities offered by Edge and Fog devices, or within data centers offering Graphics Processing Units (GPUs) or dedicated processors for Artificial Intelligence (AI). Our proposal is to alleviate this complexity by using patterns at all stages of the Cloud application life-cycle: deployment, automatic service discovery, monitoring, and adaptive application evolution. The main idea of this paper is that it is possible to reduce the complexity of composing, deploying, and evolving Cross-Cloud applications using dynamic patterns.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 731664 MELODIC: Multi-cloud execution-ware for large-scale optimised data-intensive computing; and grant agreement No. 731533 DECIDE: Multicloud applications towards the digital single market.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-33509-0_59
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-33509-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

  7. 7.

  8. 8.

  9. 9.

  10. 10.

  11. 11.

  12. 12.

  13. 13.

  14. 14.

  15. 15.

  16. 16.

  17. 17.

  18. 18.

  19. 19.


  1. Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J., Griesinger, F., Seybold, D., Romero, D., Orzechowski, M., Kapitsaki, G., Achilleos, A.: The cloud application modelling and execution language (CAMEL). OPen Access Repositorium der Universität Ulm, p. 39 (2017).

  2. Bergmayr, A., Rossini, A., Ferry, N., Horn, G., Orue-Echevarria, L., Solberg, A., Wimmer, M.: The evolution of CloudML and its applications. In: Paige, R., Cabot, J., Brambilla, M., Hill, J.H. (eds.) Proceedings of the 3rd International Workshop on Model-Driven Engineering on and for the Cloud 18th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2015), vol. 1563, pp. 13–18. CEUR Workshop Proceedings, Ottawa (2015).

  3. Androcec, D., Vrcek, N., Seva, J.: Cloud computing ontologies: a systematic review. In: The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services, MOPAS 2012, pp. 9–14 (2012)

    Google Scholar 

  4. Di Martino, B., Cretella, G., Esposito, A.: Cloud Portability and Interoperability - Issues and Current Trends. Springer, Berlin (2015).

    CrossRef  Google Scholar 

  5. Beniamino, D.M., Antonio, E., Giuseppina, C.: Semantic representation of cloud patterns and services with automated reasoning to support cloud application portability. IEEE Trans. Cloud Comput. 5(4), 765–779 (2017).

    CrossRef  Google Scholar 

  6. Richardson, C.: Microservices Patterns: With Examples in Java, 1st edn. Manning Publications, Shelter Island, New York (2018)

    Google Scholar 

  7. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. 2(9), 24–27 (2014).

  8. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a systematic mapping study. In: CLOSER 2018, pp. 221–232 (2018).

  9. Deng, Y., Head, M., Kochut, A., Munson, J., Sailer, A., Shaikh, H.: Introducing semantics to cloud services catalogs. In: 2011 IEEE International Conference on Services Computing (SCC), pp. 24–31 (2011)

    Google Scholar 

  10. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Booch, G.: Design Patterns: Elements of Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional, Reading (1994)

    Google Scholar 

  11. European Union: Regulation (EU) 2018/1807 of the European Parliament and of the Council of 14 November 2018 on a framework for the free flow of non-personal data in the European Union (text with EEA relevance) (2018).

  12. Amato, F., Moscato, F.: Pattern-based orchestration and automatic verification of composite cloud services. 56 (2016).

  13. Amato, F., Moscato, F.: Exploiting cloud and workflow patterns for the analysis of composite cloud services. Future Gener. Comput. Syst. 67, 255–265 (2017)

    CrossRef  Google Scholar 

  14. Horn, G., Skrzypek, P.: MELODIC: utility based cross cloud deployment optimisation. In: 32nd International Conference on Advanced Information Networking and Applications (AINA) Workshops, pp. 360–367. IEEE Computer Society, Krakow (2018).

  15. Horn, G., Skrzypek, P., Materka, K., Przeździek, T.: Cost benefits of multi-cloud deployment of dynamic computational intelligence applications. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA-2019). Advances in Intelligent Systems and Computing, vol. 927, pp. 1041–1054. Springer, Matsue (2019).

    Google Scholar 

  16. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27 (2009).

    CrossRef  Google Scholar 

  17. IBM: An architectural blueprint for autonomic computing. White Paper Third Edition, IBM, 17 Skyline Drive, Hawthorne, NY 10532, USA (2005).

  18. Dietrich, J., Elgar, C.: A formal description of design patterns using OWL. In: 2005 Australian Software Engineering Conference, pp. 243–250. IEEE Computer Society, Brisbane (2005).

  19. Kacprzyk, J., Pedrycz, W. (eds.): Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003).

    CrossRef  MathSciNet  Google Scholar 

  21. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).

    CrossRef  Google Scholar 

  22. Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjørven, E., Hallsteinsen, S., Horn, G., Khan, M.U., Mamelli, A., Papadopoulos, G.A., Paspallis, N., Reichle, R., Stav, E.: A comprehensive solution for application-level adaptation. Softw.: Pract. Exp. 39(4), 385–422 (2009).

    CrossRef  Google Scholar 

  23. Maciaszek, L.A., Skalniak, T.: Confluent factors, complexity and resultant architectures in modern software engineering: a case of service cloud applications. In: 5th International Symposium on Business Modeling and Software Design, BMSD 2015, pp. 37–45. SciTePress (2015)

    Google Scholar 

  24. Arostegi, M., Torre-Bastida, A., Bilbao, M.N., Del Ser, J.: A heuristic approach to the multicriteria design of IaaS cloud infrastructures for big data applications. Expert Syst. 35(5), e12259 (2018).

    CrossRef  Google Scholar 

  25. Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M., Solberg, A.: CloudMF: model-driven management of multi-cloud applications. ACM Trans. Internet Technol. (TOIT) 18(2), 16:1–16:24 (2018).

    CrossRef  Google Scholar 

  26. Avgeriou, P., Zdun, U.: Architectural patterns revisited - a pattern language. In: Longshaw, A., Zdun, U. (eds.) Proceedings of the 10th European Conference on Pattern Languages of Programs (EuroPLoP 2005), vol. D3, pp. 1–39. UVK - Universitaetsverlag Konstanz, Irsee (2005)

    Google Scholar 

  27. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps? A systematic mapping study on definitions and practices. In: Proceedings of the Scientific Workshop Proceedings of XP2016, XP 2016 Workshops, pp. 12:1–12:11. ACM, Edinburgh (2016).

  28. Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., Mamelli, A., Papadopoulos, G.A.: A development framework and methodology for self-adapting applications in ubiquitous computing environments. J. Syst. Softw. 85(12), 2840–2859 (2012).

    CrossRef  Google Scholar 

  29. Takahashi, T., Kadobayashi, Y., Fujiwara, H.: Ontological approach toward cybersecurity in cloud computing. In: Proceedings of the 3rd International Conference on Security of Information and Networks, pp. 100–109. ACM (2010)

    Google Scholar 

  30. Cunningham, W., Beck, K.: Constructing abstractions for object-oriented applications. Technical report CR-87-25, Tektronix, Inc, Computer Research Laboratory (1987)

    Google Scholar 

  31. Yamato, Y.: Optimum application deployment technology for heterogeneous IaaS cloud. Inform. Process. Soc. Jpn. 25, 56–58 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Geir Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Horn, G., Arrieta, L.OE., Di Martino, B., Skrzypek, P., Kyriazis, D. (2020). Dynamic Patterns for Cloud Application Life-Cycle Management. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2019. Lecture Notes in Networks and Systems, vol 96. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33508-3

  • Online ISBN: 978-3-030-33509-0

  • eBook Packages: EngineeringEngineering (R0)