Abstract
Cloud applications are by nature dynamic and must react to variations in use, and evolve to adopt new Cloud services, and exploit new capabilities offered by Edge and Fog devices, or within data centers offering Graphics Processing Units (GPUs) or dedicated processors for Artificial Intelligence (AI). Our proposal is to alleviate this complexity by using patterns at all stages of the Cloud application life-cycle: deployment, automatic service discovery, monitoring, and adaptive application evolution. The main idea of this paper is that it is possible to reduce the complexity of composing, deploying, and evolving Cross-Cloud applications using dynamic patterns.
This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 731664 MELODIC: Multi-cloud execution-ware for large-scale optimised data-intensive computing; and grant agreement No. 731533 DECIDE: Multicloud applications towards the digital single market.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
References
Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J., Griesinger, F., Seybold, D., Romero, D., Orzechowski, M., Kapitsaki, G., Achilleos, A.: The cloud application modelling and execution language (CAMEL). OPen Access Repositorium der Universität Ulm, p. 39 (2017). https://doi.org/10.18725/OPARU-4339
Bergmayr, A., Rossini, A., Ferry, N., Horn, G., Orue-Echevarria, L., Solberg, A., Wimmer, M.: The evolution of CloudML and its applications. In: Paige, R., Cabot, J., Brambilla, M., Hill, J.H. (eds.) Proceedings of the 3rd International Workshop on Model-Driven Engineering on and for the Cloud 18th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2015), vol. 1563, pp. 13–18. CEUR Workshop Proceedings, Ottawa (2015). http://ceur-ws.org/Vol-1563/
Androcec, D., Vrcek, N., Seva, J.: Cloud computing ontologies: a systematic review. In: The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services, MOPAS 2012, pp. 9–14 (2012)
Di Martino, B., Cretella, G., Esposito, A.: Cloud Portability and Interoperability - Issues and Current Trends. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-13701-8
Beniamino, D.M., Antonio, E., Giuseppina, C.: Semantic representation of cloud patterns and services with automated reasoning to support cloud application portability. IEEE Trans. Cloud Comput. 5(4), 765–779 (2017). https://doi.org/10.1109/TCC.2015.2433259
Richardson, C.: Microservices Patterns: With Examples in Java, 1st edn. Manning Publications, Shelter Island, New York (2018)
Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. 2(9), 24–27 (2014). http://injoit.org/index.php/j1/article/viewFile/139/104
Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a systematic mapping study. In: CLOSER 2018, pp. 221–232 (2018). https://pdfs.semanticscholar.org/f6e8/8823482de1729584acbfb450d4502f4d393d.pdf
Deng, Y., Head, M., Kochut, A., Munson, J., Sailer, A., Shaikh, H.: Introducing semantics to cloud services catalogs. In: 2011 IEEE International Conference on Services Computing (SCC), pp. 24–31 (2011)
Gamma, E., Helm, R., Johnson, R., Vlissides, J., Booch, G.: Design Patterns: Elements of Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional, Reading (1994)
European Union: Regulation (EU) 2018/1807 of the European Parliament and of the Council of 14 November 2018 on a framework for the free flow of non-personal data in the European Union (text with EEA relevance) (2018). http://data.europa.eu/eli/reg/2018/1807/oj
Amato, F., Moscato, F.: Pattern-based orchestration and automatic verification of composite cloud services. 56 (2016). https://www.sciencedirect.com/science/article/pii/S0045790616302026
Amato, F., Moscato, F.: Exploiting cloud and workflow patterns for the analysis of composite cloud services. Future Gener. Comput. Syst. 67, 255–265 (2017)
Horn, G., Skrzypek, P.: MELODIC: utility based cross cloud deployment optimisation. In: 32nd International Conference on Advanced Information Networking and Applications (AINA) Workshops, pp. 360–367. IEEE Computer Society, Krakow (2018). https://doi.org/10.1109/WAINA.2018.00112
Horn, G., Skrzypek, P., Materka, K., Przeździek, T.: Cost benefits of multi-cloud deployment of dynamic computational intelligence applications. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA-2019). Advances in Intelligent Systems and Computing, vol. 927, pp. 1041–1054. Springer, Matsue (2019). https://doi.org/10.1007/978-3-030-15035-8_102
Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27 (2009). https://doi.org/10.1109/MC.2009.326
IBM: An architectural blueprint for autonomic computing. White Paper Third Edition, IBM, 17 Skyline Drive, Hawthorne, NY 10532, USA (2005). http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
Dietrich, J., Elgar, C.: A formal description of design patterns using OWL. In: 2005 Australian Software Engineering Conference, pp. 243–250. IEEE Computer Society, Brisbane (2005). https://doi.org/10.1109/ASWEC.2005.6
Kacprzyk, J., Pedrycz, W. (eds.): Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Heidelberg (2015)
Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003). https://doi.org/10.1109/MC.2003.1160055
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017
Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjørven, E., Hallsteinsen, S., Horn, G., Khan, M.U., Mamelli, A., Papadopoulos, G.A., Paspallis, N., Reichle, R., Stav, E.: A comprehensive solution for application-level adaptation. Softw.: Pract. Exp. 39(4), 385–422 (2009). https://doi.org/10.1002/spe.900
Maciaszek, L.A., Skalniak, T.: Confluent factors, complexity and resultant architectures in modern software engineering: a case of service cloud applications. In: 5th International Symposium on Business Modeling and Software Design, BMSD 2015, pp. 37–45. SciTePress (2015)
Arostegi, M., Torre-Bastida, A., Bilbao, M.N., Del Ser, J.: A heuristic approach to the multicriteria design of IaaS cloud infrastructures for big data applications. Expert Syst. 35(5), e12259 (2018). https://doi.org/10.1111/exsy.12259
Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M., Solberg, A.: CloudMF: model-driven management of multi-cloud applications. ACM Trans. Internet Technol. (TOIT) 18(2), 16:1–16:24 (2018). https://doi.org/10.1145/3125621
Avgeriou, P., Zdun, U.: Architectural patterns revisited - a pattern language. In: Longshaw, A., Zdun, U. (eds.) Proceedings of the 10th European Conference on Pattern Languages of Programs (EuroPLoP 2005), vol. D3, pp. 1–39. UVK - Universitaetsverlag Konstanz, Irsee (2005)
Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps? A systematic mapping study on definitions and practices. In: Proceedings of the Scientific Workshop Proceedings of XP2016, XP 2016 Workshops, pp. 12:1–12:11. ACM, Edinburgh (2016). https://doi.org/10.1145/2962695.2962707
Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., Mamelli, A., Papadopoulos, G.A.: A development framework and methodology for self-adapting applications in ubiquitous computing environments. J. Syst. Softw. 85(12), 2840–2859 (2012). https://doi.org/10.1016/j.jss.2012.07.052
Takahashi, T., Kadobayashi, Y., Fujiwara, H.: Ontological approach toward cybersecurity in cloud computing. In: Proceedings of the 3rd International Conference on Security of Information and Networks, pp. 100–109. ACM (2010)
Cunningham, W., Beck, K.: Constructing abstractions for object-oriented applications. Technical report CR-87-25, Tektronix, Inc, Computer Research Laboratory (1987)
Yamato, Y.: Optimum application deployment technology for heterogeneous IaaS cloud. Inform. Process. Soc. Jpn. 25, 56–58 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Horn, G., Arrieta, L.OE., Di Martino, B., Skrzypek, P., Kyriazis, D. (2020). Dynamic Patterns for Cloud Application Life-Cycle Management. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2019. Lecture Notes in Networks and Systems, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-33509-0_59
Download citation
DOI: https://doi.org/10.1007/978-3-030-33509-0_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33508-3
Online ISBN: 978-3-030-33509-0
eBook Packages: EngineeringEngineering (R0)