Skip to main content

Dynamic Patterns for Cloud Application Life-Cycle Management

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2019)

Abstract

Cloud applications are by nature dynamic and must react to variations in use, and evolve to adopt new Cloud services, and exploit new capabilities offered by Edge and Fog devices, or within data centers offering Graphics Processing Units (GPUs) or dedicated processors for Artificial Intelligence (AI). Our proposal is to alleviate this complexity by using patterns at all stages of the Cloud application life-cycle: deployment, automatic service discovery, monitoring, and adaptive application evolution. The main idea of this paper is that it is possible to reduce the complexity of composing, deploying, and evolving Cross-Cloud applications using dynamic patterns.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 731664 MELODIC: Multi-cloud execution-ware for large-scale optimised data-intensive computing; and grant agreement No. 731533 DECIDE: Multicloud applications towards the digital single market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.iqvis.com/blog/cloud-computing-predictions-2020/.

  2. 2.

    https://melodic.cloud/.

  3. 3.

    https://www.decide-h2020.eu/.

  4. 4.

    https://www.w3.org/TR/owl2-overview/.

  5. 5.

    https://www.w3.org/.

  6. 6.

    https://www.w3.org/Submission/OWL-S/.

  7. 7.

    https://www.ieee.org/.

  8. 8.

    https://standards.ieee.org/project/2302.html.

  9. 9.

    https://octopus.com/.

  10. 10.

    https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaag/wecm/l0wecm00_was_deployment_manager.htm.

  11. 11.

    https://cloud.google.com/deployment-manager/.

  12. 12.

    https://kubernetes.io/.

  13. 13.

    https://web.cloudmore.com/.

  14. 14.

    https://www.computenext.com/platform/enterprise-cloud-brokerage.

  15. 15.

    http://www.nephostechnologies.com/technology/hybrid-cloud-management/.

  16. 16.

    https://www.intercloud.com/platform/overview.

  17. 17.

    https://www.ibm.com/us-en/marketplace/cloud-brokerage-solutions.

  18. 18.

    https://www.jamcracker.com/.

  19. 19.

    https://www.decide-h2020.eu.

References

  1. Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J., Griesinger, F., Seybold, D., Romero, D., Orzechowski, M., Kapitsaki, G., Achilleos, A.: The cloud application modelling and execution language (CAMEL). OPen Access Repositorium der Universität Ulm, p. 39 (2017). https://doi.org/10.18725/OPARU-4339

  2. Bergmayr, A., Rossini, A., Ferry, N., Horn, G., Orue-Echevarria, L., Solberg, A., Wimmer, M.: The evolution of CloudML and its applications. In: Paige, R., Cabot, J., Brambilla, M., Hill, J.H. (eds.) Proceedings of the 3rd International Workshop on Model-Driven Engineering on and for the Cloud 18th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2015), vol. 1563, pp. 13–18. CEUR Workshop Proceedings, Ottawa (2015). http://ceur-ws.org/Vol-1563/

  3. Androcec, D., Vrcek, N., Seva, J.: Cloud computing ontologies: a systematic review. In: The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services, MOPAS 2012, pp. 9–14 (2012)

    Google Scholar 

  4. Di Martino, B., Cretella, G., Esposito, A.: Cloud Portability and Interoperability - Issues and Current Trends. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-13701-8

    Book  Google Scholar 

  5. Beniamino, D.M., Antonio, E., Giuseppina, C.: Semantic representation of cloud patterns and services with automated reasoning to support cloud application portability. IEEE Trans. Cloud Comput. 5(4), 765–779 (2017). https://doi.org/10.1109/TCC.2015.2433259

    Article  Google Scholar 

  6. Richardson, C.: Microservices Patterns: With Examples in Java, 1st edn. Manning Publications, Shelter Island, New York (2018)

    Google Scholar 

  7. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. 2(9), 24–27 (2014). http://injoit.org/index.php/j1/article/viewFile/139/104

  8. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a systematic mapping study. In: CLOSER 2018, pp. 221–232 (2018). https://pdfs.semanticscholar.org/f6e8/8823482de1729584acbfb450d4502f4d393d.pdf

  9. Deng, Y., Head, M., Kochut, A., Munson, J., Sailer, A., Shaikh, H.: Introducing semantics to cloud services catalogs. In: 2011 IEEE International Conference on Services Computing (SCC), pp. 24–31 (2011)

    Google Scholar 

  10. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Booch, G.: Design Patterns: Elements of Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional, Reading (1994)

    Google Scholar 

  11. European Union: Regulation (EU) 2018/1807 of the European Parliament and of the Council of 14 November 2018 on a framework for the free flow of non-personal data in the European Union (text with EEA relevance) (2018). http://data.europa.eu/eli/reg/2018/1807/oj

  12. Amato, F., Moscato, F.: Pattern-based orchestration and automatic verification of composite cloud services. 56 (2016). https://www.sciencedirect.com/science/article/pii/S0045790616302026

  13. Amato, F., Moscato, F.: Exploiting cloud and workflow patterns for the analysis of composite cloud services. Future Gener. Comput. Syst. 67, 255–265 (2017)

    Article  Google Scholar 

  14. Horn, G., Skrzypek, P.: MELODIC: utility based cross cloud deployment optimisation. In: 32nd International Conference on Advanced Information Networking and Applications (AINA) Workshops, pp. 360–367. IEEE Computer Society, Krakow (2018). https://doi.org/10.1109/WAINA.2018.00112

  15. Horn, G., Skrzypek, P., Materka, K., Przeździek, T.: Cost benefits of multi-cloud deployment of dynamic computational intelligence applications. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA-2019). Advances in Intelligent Systems and Computing, vol. 927, pp. 1041–1054. Springer, Matsue (2019). https://doi.org/10.1007/978-3-030-15035-8_102

  16. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27 (2009). https://doi.org/10.1109/MC.2009.326

    Article  Google Scholar 

  17. IBM: An architectural blueprint for autonomic computing. White Paper Third Edition, IBM, 17 Skyline Drive, Hawthorne, NY 10532, USA (2005). http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

  18. Dietrich, J., Elgar, C.: A formal description of design patterns using OWL. In: 2005 Australian Software Engineering Conference, pp. 243–250. IEEE Computer Society, Brisbane (2005). https://doi.org/10.1109/ASWEC.2005.6

  19. Kacprzyk, J., Pedrycz, W. (eds.): Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Heidelberg (2015)

    Google Scholar 

  20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003). https://doi.org/10.1109/MC.2003.1160055

    Article  MathSciNet  Google Scholar 

  21. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  22. Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjørven, E., Hallsteinsen, S., Horn, G., Khan, M.U., Mamelli, A., Papadopoulos, G.A., Paspallis, N., Reichle, R., Stav, E.: A comprehensive solution for application-level adaptation. Softw.: Pract. Exp. 39(4), 385–422 (2009). https://doi.org/10.1002/spe.900

    Article  Google Scholar 

  23. Maciaszek, L.A., Skalniak, T.: Confluent factors, complexity and resultant architectures in modern software engineering: a case of service cloud applications. In: 5th International Symposium on Business Modeling and Software Design, BMSD 2015, pp. 37–45. SciTePress (2015)

    Google Scholar 

  24. Arostegi, M., Torre-Bastida, A., Bilbao, M.N., Del Ser, J.: A heuristic approach to the multicriteria design of IaaS cloud infrastructures for big data applications. Expert Syst. 35(5), e12259 (2018). https://doi.org/10.1111/exsy.12259

    Article  Google Scholar 

  25. Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M., Solberg, A.: CloudMF: model-driven management of multi-cloud applications. ACM Trans. Internet Technol. (TOIT) 18(2), 16:1–16:24 (2018). https://doi.org/10.1145/3125621

    Article  Google Scholar 

  26. Avgeriou, P., Zdun, U.: Architectural patterns revisited - a pattern language. In: Longshaw, A., Zdun, U. (eds.) Proceedings of the 10th European Conference on Pattern Languages of Programs (EuroPLoP 2005), vol. D3, pp. 1–39. UVK - Universitaetsverlag Konstanz, Irsee (2005)

    Google Scholar 

  27. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps? A systematic mapping study on definitions and practices. In: Proceedings of the Scientific Workshop Proceedings of XP2016, XP 2016 Workshops, pp. 12:1–12:11. ACM, Edinburgh (2016). https://doi.org/10.1145/2962695.2962707

  28. Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., Mamelli, A., Papadopoulos, G.A.: A development framework and methodology for self-adapting applications in ubiquitous computing environments. J. Syst. Softw. 85(12), 2840–2859 (2012). https://doi.org/10.1016/j.jss.2012.07.052

    Article  Google Scholar 

  29. Takahashi, T., Kadobayashi, Y., Fujiwara, H.: Ontological approach toward cybersecurity in cloud computing. In: Proceedings of the 3rd International Conference on Security of Information and Networks, pp. 100–109. ACM (2010)

    Google Scholar 

  30. Cunningham, W., Beck, K.: Constructing abstractions for object-oriented applications. Technical report CR-87-25, Tektronix, Inc, Computer Research Laboratory (1987)

    Google Scholar 

  31. Yamato, Y.: Optimum application deployment technology for heterogeneous IaaS cloud. Inform. Process. Soc. Jpn. 25, 56–58 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Horn, G., Arrieta, L.OE., Di Martino, B., Skrzypek, P., Kyriazis, D. (2020). Dynamic Patterns for Cloud Application Life-Cycle Management. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2019. Lecture Notes in Networks and Systems, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-33509-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33509-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33508-3

  • Online ISBN: 978-3-030-33509-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics