Skip to main content

A Parallel and Improved Quadrivalent Quantum-Inspired Gravitational Search Algorithm in Optimal Design of WSNs

  • Conference paper
  • First Online:
High-Performance Computing and Big Data Analysis (TopHPC 2019)

Abstract

Wireless Sensor Networks (WSNs) are recently used in monitoring applications. One of the most important challenges in WSNs is determining the operational mode of sensors, decreasing the energy consumption while the connectivity requirements and the special properties are satisfied. This problem is an NP-hard one and is a time–consuming progress. In this study, an improved version of quadrivalent quantum-inspired gravitational search algorithm as a new metaheuristic, well suitable for quadrivalent problems is proposed using Not Q-Gate to optimize the performance of the WSN. Beside, to enhance the speed and the accuracy of the algorithm more, we used a parallelizing technique using Open-MP. Parallelizing this algorithm on mentioned problem is useful from four aspects; 1 - accelerate the speed of the algorithm, 2 - improving the quality of solutions by letting the increasing the population size, 3 - The possibility of using the algorithm, in larger-scale WSNs and 4 - power affectivity of the base station using multicore processors. To validate the performance of our proposed approach, a comparison between this approach and the previous methods is performed. Our experiments verified that the proposed method can effectively improve the performance more than 2.25 times and the speedup faster than 4 times on an 8-core CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The main body of this subsection is adopted from [18, 21].

References

  1. Talbi, E.-G.: Metaheuristics: From Design to Implementation, 15th edn. Wiley, Chicago (2009)

    Book  Google Scholar 

  2. Knysh, D.S., Kureichik, V.M.: Parallel genetic algorithms: a survey and problem state of the art. Comput. Syst. Sci. Int. 49(4), 579–589 (2010)

    Article  MathSciNet  Google Scholar 

  3. Vanneschi, L., Codecasa, D., Mauri, G.: Comparative study a of four parallel and distributed PSO methods. New Gener. Comput. 29, 129–161 (2011)

    Article  Google Scholar 

  4. Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey on parallel ant colony optimization. Appl. Soft Comput. 11(8), 5181–5197 (2011)

    Article  Google Scholar 

  5. Parpinelli, R.S., Benitez, C.M.V., Lopes, H.S.: Parallel approaches for the artificial bee colony algorithm. In: Panigrahi, B.K., Shi, Y., Lim, M.H. (eds.) Handbook of Swarm Intelligence. ALO, vol. 8, pp. 329–345. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17390-5_14

    Chapter  Google Scholar 

  6. OnbaÅŸoÄŸlu, E., Ă–zdamar, L.: Parallel simulated annealing algorithms in global optimization. Global Optim. 19(1), 27–50 (2001)

    Article  MathSciNet  Google Scholar 

  7. Majd, A., Sahebi, G., Daneshtalab, M., Plosila, J., Lotfi, Sh., Tenhunen, H.: Parallel imperialist competitive algorithms. Concurr. Comput. Pract. Exp. (2018). https://doi.org/10.1002/cpe.4393

    Article  Google Scholar 

  8. Mahmoud, K.R., Hamad, S.: Parallel implementation of hybrid GSA-NM algorithm for adaptive beam-forming applications. Electromagnet. Res. 58, 47–57 (2014)

    Article  Google Scholar 

  9. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett. 82, 7–13 (2002)

    Article  MathSciNet  Google Scholar 

  10. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  11. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm. Nat. Comput. 9, 727–745 (2009)

    Article  MathSciNet  Google Scholar 

  12. Rashedi, E., Nezamabadi-pour, H.: Feature subset selection using improved binary gravitational search algorithm. Intell. Fuzzy Syst. 26(3), 1211–1221 (2014)

    Google Scholar 

  13. Soleimanpour, M., Nezamabadi-pour, H., Farsangi, M.M.: A quantum inspired gravitational search algorithm for numerical function optimization. Inf. Sci. 267(20), 83–100 (2014)

    Article  MathSciNet  Google Scholar 

  14. Nezamabadi-pour, H.: A quantum-inspired gravitational search algorithm for binary encoded optimization problems. Eng. Appl. Artif. Intell. 40, 62–75 (2015)

    Article  Google Scholar 

  15. Ibrahim, A.A., Mohamed, A., Shareef, H.: A novel quantum-inspired binary gravitational search algorithm in obtaining optimal power quality monitor placement. Appl. Sci. 12(9), 822–830 (2012)

    Article  Google Scholar 

  16. Barani, F., Mirhosseini, M., Nezamabadi-pour, H.: Application of binary quantum-inspired gravitational search algorithm in feature subset selection. Appl. Intell. 47(2), 304–318 (2017)

    Article  Google Scholar 

  17. Barani, F., Mirhosseini, M., Nezamabadi-pour, H., Farsangi, M.M.: Unit commitment by an improved binary quantum GSA. Appl. Soft Comput. 60, 180–189 (2017)

    Article  Google Scholar 

  18. Mirhosseini, M., Barani, F., Nezamabadi-pour, H.: Design optimization of wireless sensor networks in precision agriculture using improved BQIGSA. Sustain. Comput.: Inform. Syst. 16, 38–47 (2017)

    Google Scholar 

  19. Ferentinos, K.P., Tsiligiridis, T.A.: Adaptive design optimization of wireless sensor networks using genetic algorithms. Comput. Netw. 51, 1031–1051 (2007)

    Article  Google Scholar 

  20. Hojjatoleslami, S., Aghazarian, V., Dehghan, M., Motlagh, N.Gh.: PSO based node placement optimization for wireless sensor networks. In: Proceedings of the IEEE Wireless Communication and Networking, pp. 12–17 (2011)

    Google Scholar 

  21. Mirhosseini, M., Barani, F., Nezamabadi-pour, H.: QQIGSA: a quadrivalent quantum-inspired GSA and its application in optimal adaptive design of wireless sensor networks. Netw. Comput. Appl. 78, 231–241 (2017)

    Article  Google Scholar 

  22. Caner, C., Dreo, J., Saveant, P., Vidal, V.: Parallel divide-and-evolve: experiments with Open-MP on a multicore machine. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, Dublin, Ireland (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Fazlali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mirhosseini, M., Fazlali, M., Gaydadjiev, G. (2019). A Parallel and Improved Quadrivalent Quantum-Inspired Gravitational Search Algorithm in Optimal Design of WSNs. In: Grandinetti, L., Mirtaheri, S., Shahbazian, R. (eds) High-Performance Computing and Big Data Analysis. TopHPC 2019. Communications in Computer and Information Science, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-33495-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33495-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33494-9

  • Online ISBN: 978-3-030-33495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics