Abstract
Today’s ever-growing information world, in which we witness the juggernaut of information explosion stemming from social networks, medical records, diverse medias, IoT, and so forth, has called for a solution—encompassing boundless resources for this voluminous information’s storing as well as processing in a distributed manner. To do so, although cloud computing has come up with an applicable remedy, it has overwhelmingly required a well-defined load-balancing mechanism, lifeblood of any given distributed system; a load-balancing algorithm has consistently strove to pinpoint overloaded nodes so as to disseminate and shift the burden of extra workload towards the under-loaded ones—by which the overall system performance in terms of resource utilization, throughput, cost, and response time will be guaranteed after all. In the interests of placing a high premium on load-balancing issue in distributed systems, in this study, we have provided a review concerning load-balancing algorithms in cloud environment for Big Data environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Graham-Rowe, D., et al.: Big data: science in the petabyte era. Nature 455(7209), 8–9 (2008)
Neves, P.C., Schmerl, B.R., Cámara, J., Bernardino, J.: Big data in cloud computing: Features and issues. In: IoTBD, pp. 307–314 (2016)
Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)
Job, M.A.: Big data-as-a-service (BDaaS) in cloud computing environments
Patel, N., Chauhan, S.: A survey on load balancing and scheduling in cloud computing. Int. J. Sci. Res. Dev. 1, 185–189 (2015)
Singh, A., Juneja, D., Malhotra, M.: Autonomous agent based load balancing algorithm in cloud computing. Procedia Comput. Sci. 45, 832–841 (2015)
Yadav, V.K., Yadav, M.P., Yadav, D.K.: Reliable task allocation in heterogeneous distributed system with random node failure: load sharing approach. In: 2012 International Conference on Computing Sciences, pp. 187–192. IEEE (2012)
Fox, G., Qiu, J., Jha, S., Ekanayake, S., Kamburugamuve, S.: Big data, simulations and HPC convergence. In: Rabl, T., Nambiar, R., Baru, C., Bhandarkar, M., Poess, M., Pyne, S. (eds.) WBDB -2015. LNCS, vol. 10044, pp. 3–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49748-8_1
Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers. J. Parallel Distrib. Comput. 71(6), 732–749 (2011)
Katyal, M., Mishra, A.: A comparative study of load balancing algorithms in cloud computing environment. arXiv preprint arXiv:1403.6918 (2014)
Mata-Toledo, R., Gupta, P.: Green data center: how green can we perform. J. Technol. Res. Acad. Bus. Res. Inst. 2(1), 1–8 (2010)
Khiyaita, A., El Bakkali, H., Zbakh, M., El Kettani, D.: Load balancing cloud computing: state of art. In: 2012 National Days of Network Security and Systems, pp. 106–109. IEEE (2012)
Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann, Burlington (2013)
Lohr, S.: The age of big data. New York Times 11, 2012 (2012)
Kansal, N.J., Chana, I.: Cloud load balancing techniques: a step towards green computing. IJCSI Int. J. Comput. Sci. Issues 9(1), 238–246 (2012)
Escalante, D., Korty, A.J.: Cloud services: policy and assessment. Educause Rev. 46(4) (2011)
Rastogi, G., Sushil, R.: Analytical literature survey on existing load balancing schemes in cloud computing. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 1506–1510. IEEE (2015)
Kabiraj, S., Topkar, V., Walke, R.C.: Going green: a holistic approach to transform business. arXiv preprint arXiv:1009.0844 (2010)
Baliga, J., Ayre, R.W.A., Hinton, K., Tucker, R.S.: Green cloud computing: balancing energy in processing, storage, and transport. Proc. IEEE 99(1), 149–167 (2010)
Kushwaha, M., Gupta, S.: Various schemes of load balancing in distributed systems–a review. Int. J. Sci. Res. Eng. Technol. (IJSRET) 4(7), 741–748 (2015)
Jafarnejad Ghomi, E., Masoud Rahmani, A., Nasih Qader, N.: Load-balancing algorithms in cloud computing: a survey. J. Netw. Comput. Appl. 88, 50–71 (2017)
Rathore, N., Chana, I.: Load balancing and job migration techniques in grid: a survey of recent trends. Wirel. Pers. Commun. 79(3), 2089–2125 (2014)
Shah, N., Farik, M.: Static load balancing algorithms in cloud computing: challenges & solutions. Int. J. Sci. Technol. Res. 4(10), 365–367 (2015)
El-Zoghdy, S.F., Ghoniemy, S.: A survey of load balancing in high-performance distributed computing systems. Int. J. Adv. Comput. Res. 1 2014
Mirtaheri, S.L., Grandinetti, L.: Dynamic load balancing in distributed exascale computing systems. Cluster Comput. 20(4), 3677–3689 (2017)
Khaneghah, E.M., Nezhad, N.O., Mirtaheri, S.L., Sharifi, M., Shirpour, A.: An efficient live process migration approach for high performance cluster computing systems. In: Pichappan, P., Ahmadi, H., Ariwa, E. (eds.) INCT 2011. CCIS, vol. 241, pp. 362–373. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27337-7_34
Sharma, G.: A review on different approaches for load balancing in computational grid. J. Glob. Res. Comput. Sci. 4(4), 82–85 (2013)
Arab, M.N., Mirtaheri, S.L., Khaneghah, E.M., Sharifi, M., Mohammadkhani, M.: Improving learning-based request forwarding in resource discovery through load-awareness. In: Hameurlain, A., Tjoa, A.M. (eds.) Globe 2011. LNCS, vol. 6864, pp. 73–82. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22947-3_7
Samal, P., Mishra, P.: Analysis of variants in round robin algorithms for load balancing in cloud computing. Int. J. Comput. Sci. Inf. Technol. 4(3), 416–419 (2013)
Al Nuaimi, K., Mohamed, N., Al Nuaimi, M., Al-Jaroodi, J.: A survey of load balancing in cloud computing: challenges and algorithms. In: 2012 Second Symposium on Network Cloud Computing and Applications, pp. 137–142. IEEE (2012)
Wang, S.-C., Yan, K.-Q., Liao, W.-P., Wang, S.-S.: Towards a load balancing in a three-level cloud computing network. In: 2010 3rd International Conference on Computer Science and Information Technology, vol. 1, pp. 108–113. IEEE (2010)
Sahu, Y., Pateriya, R.K.: Cloud computing overview with load balancing techniques. Int. J. Comput. Appl. 65(24) (2013)
Kokilavani, T., Amalarethinam, D.I.G., et al.: Load balanced min-min algorithm for static meta-task scheduling in grid computing. Int. J. Comput. Appl. 20(2), 43–49 (2011)
Jamuna, P., Kumar, R.A.: Optimized cloud partitioning technique to simplify load balancing. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(11), 820–822 (2013)
LD, D.B., Krishna, P.V.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013)
Wu, T.-Y., Lee, W.-T., Lin, Y.-S., Lin, Y.-S., Chan, H.-L., Huang, J.-S.: Dynamic load balancing mechanism based on cloud storage. In: 2012 Computing, Communications and Applications Conference, pp. 102–106. IEEE (2012)
Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm i. Continuous parameter optimization. Evol. Comput. 1(1), 25–49 (1993)
Grosu, D., Chronopoulos, A.T.: Noncooperative load balancing in distributed systems. J. Parallel Distrib. Comput. 65(9), 1022–1034 (2005)
Lingawar, R.P., Srode, M.V., Ghonge, M.M.: Survey on load-balancing techniques in cloud computing. Int. J. Advent Res. Comput. Electron. 1(3), 18–21 (2014)
Bareen, S., Shinde, K., Borde, S.: Challenges of big data processing and scheduling of processes using various hadoop schedulers: a survey. Int. J. Multifaceted Multilingual Stud. 3(12) (2017)
Zaharia, M.: Job scheduling with the fair and capacity schedulers. Hadoop Summit 9 (2009)
Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In: Proceedings of the 5th European Conference on Computer Systems, pp. 265–278. ACM (2010)
Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with mapreduce: a survey. AcM sIGMoD Rec. 40(4), 11–20 (2012)
Kc, K., Anyanwu, K.: Scheduling hadoop jobs to meet deadlines. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp. 388–392. IEEE (2010)
Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-scale cluster management at Google with Borg. In: Proceedings of the Tenth European Conference on Computer Systems, p. 18. ACM (2015)
Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible, scalable schedulers for large compute clusters (2013)
Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low latency scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 69–84. ACM (2013)
Karanasos, K.: Mercury: hybrid centralized and distributed scheduling in large shared clusters. In: 2015 \(\{\)USENIX\(\}\) Annual Technical Conference (\(\{\)USENIX\(\}\)\(\{\)ATC\(\}\) 15), pp. 485–497 (2015)
Vavilapalli, V.K., et al.: Apache hadoop yarn: yet another resource negotiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing, p. 5. ACM (2013)
Achar, R., Thilagam, P.S., Soans, N., Vikyah, P.V., Rao, S., Vijeth, A.M.: Load balancing in cloud based on live migration of virtual machines. In: 2013 Annual IEEE India Conference (INDICON), pp. 1–5. IEEE (2013)
Daraghmi, E.Y., Yuan, S.-M.: A small world based overlay network for improving dynamic load-balancing. J. Syst. Softw. 107, 187–203 (2015)
Dam, S., Mandal, G., Dasgupta, K., Dutta, P.: Genetic algorithm and gravitational emulation based hybrid load balancing strategy in cloud computing. In: Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), pp. 1–7. IEEE (2015)
Zhao, Y., Huang, W.: Adaptive distributed load balancing algorithm based on live migration of virtual machines in cloud. In: 2009 Fifth International Joint Conference on INC, IMS and IDC, pp. 170–175. IEEE (2009)
Zhang, Z., Zhang, X.: A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation. In: 2010 The 2nd International Conference on Industrial Mechatronics and Automation, vol. 2, pp. 240–243. IEEE (2010)
Zhu, K., Song, H., Liu, L., Gao, J., Cheng, G.: Hybrid genetic algorithm for cloud computing applications. In: 2011 IEEE Asia-Pacific Services Computing Conference, pp. 182–187. IEEE (2011)
Nishant, K., et al.: Load balancing of nodes in cloud using ant colony optimization. In: 2012 UKSim 14th International Conference on Computer Modelling and Simulation, pp. 3–8. IEEE (2012)
Yao, J., He, J.: Load balancing strategy of cloud computing based on artificial bee algorithm. In: 2012 8th International Conference on Computing Technology and Information Management (NCM and ICNIT), vol. 1, pp. 185–189. IEEE (2012)
Aslanzadeh, S., Chaczko, Z.: Load balancing optimization in cloud computing: applying endocrine-particale swarm optimization. In: 2015 IEEE International Conference On Electro/Information Technology (Eit), pp. 165–169. IEEE (2015)
Sun, W., Ji, Z., Sun, J., Zhang, N., Hu, Y.: Saaco: a self adaptive ant colony optimization in cloud computing. In: 2015 IEEE Fifth International Conference on Big Data and Cloud Computing, pp. 148–153. IEEE (2015)
Wen, W.-T., Wang, C.-D., Wu, D.-S., Xie, Y.-Y.: An ACO-based scheduling strategy on load balancing in cloud computing environment. In: 2015 Ninth International Conference on Frontier of Computer Science and Technology, pp. 364–369. IEEE (2015)
Pan, K., Chen, J.: Load balancing in cloud computing environment based on an improved particle swarm optimization. In: 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 595–598. IEEE (2015)
Babu, K.R.R., Joy, A.A., Samuel, P.: Load balancing of tasks in cloud computing environment based on bee colony algorithm. In: 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), pp. 89–93. IEEE (2015)
Wang, T., Liu, Z., Chen, Y., Xu, Y., Dai, X.: Load balancing task scheduling based on genetic algorithm in cloud computing. In: 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, pp. 146–152. IEEE (2014)
Rana, M., Bilgaiyan, S., Kar, U.: A study on load balancing in cloud computing environment using evolutionary and swarm based algorithms. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 245–250. IEEE (2014)
Gupta, E., Deshpande, V.: A technique based on ant colony optimization for load balancing in cloud data center. In: 2014 International Conference on Information Technology, pp. 12–17. IEEE (2014)
Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D.: Cloud task scheduling based on load balancing ant colony optimization. In 2011 Sixth Annual ChinaGrid Conference, pp. 3–9. IEEE (2011)
Kaur, R., Ghumman, N.: Hybrid improved max min ant algorithm for load balancing in cloud. In: Proceedings of the International Conference on Communication, Computing and Systems (CCS 2014), pp. 188–191 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Aghdashi, A., Mirtaheri, S.L. (2019). A Survey on Load Balancing in Cloud Systems for Big Data Applications. In: Grandinetti, L., Mirtaheri, S., Shahbazian, R. (eds) High-Performance Computing and Big Data Analysis. TopHPC 2019. Communications in Computer and Information Science, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-33495-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-33495-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33494-9
Online ISBN: 978-3-030-33495-6
eBook Packages: Computer ScienceComputer Science (R0)