Skip to main content

A Survey on Load Balancing in Cloud Systems for Big Data Applications

  • Conference paper
  • First Online:
High-Performance Computing and Big Data Analysis (TopHPC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 891))

Abstract

Today’s ever-growing information world, in which we witness the juggernaut of information explosion stemming from social networks, medical records, diverse medias, IoT, and so forth, has called for a solution—encompassing boundless resources for this voluminous information’s storing as well as processing in a distributed manner. To do so, although cloud computing has come up with an applicable remedy, it has overwhelmingly required a well-defined load-balancing mechanism, lifeblood of any given distributed system; a load-balancing algorithm has consistently strove to pinpoint overloaded nodes so as to disseminate and shift the burden of extra workload towards the under-loaded ones—by which the overall system performance in terms of resource utilization, throughput, cost, and response time will be guaranteed after all. In the interests of placing a high premium on load-balancing issue in distributed systems, in this study, we have provided a review concerning load-balancing algorithms in cloud environment for Big Data environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Graham-Rowe, D., et al.: Big data: science in the petabyte era. Nature 455(7209), 8–9 (2008)

    Article  Google Scholar 

  2. Neves, P.C., Schmerl, B.R., Cámara, J., Bernardino, J.: Big data in cloud computing: Features and issues. In: IoTBD, pp. 307–314 (2016)

    Google Scholar 

  3. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)

    Google Scholar 

  4. Job, M.A.: Big data-as-a-service (BDaaS) in cloud computing environments

    Google Scholar 

  5. Patel, N., Chauhan, S.: A survey on load balancing and scheduling in cloud computing. Int. J. Sci. Res. Dev. 1, 185–189 (2015)

    Google Scholar 

  6. Singh, A., Juneja, D., Malhotra, M.: Autonomous agent based load balancing algorithm in cloud computing. Procedia Comput. Sci. 45, 832–841 (2015)

    Article  Google Scholar 

  7. Yadav, V.K., Yadav, M.P., Yadav, D.K.: Reliable task allocation in heterogeneous distributed system with random node failure: load sharing approach. In: 2012 International Conference on Computing Sciences, pp. 187–192. IEEE (2012)

    Google Scholar 

  8. Fox, G., Qiu, J., Jha, S., Ekanayake, S., Kamburugamuve, S.: Big data, simulations and HPC convergence. In: Rabl, T., Nambiar, R., Baru, C., Bhandarkar, M., Poess, M., Pyne, S. (eds.) WBDB -2015. LNCS, vol. 10044, pp. 3–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49748-8_1

    Chapter  Google Scholar 

  9. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers. J. Parallel Distrib. Comput. 71(6), 732–749 (2011)

    Article  Google Scholar 

  10. Katyal, M., Mishra, A.: A comparative study of load balancing algorithms in cloud computing environment. arXiv preprint arXiv:1403.6918 (2014)

  11. Mata-Toledo, R., Gupta, P.: Green data center: how green can we perform. J. Technol. Res. Acad. Bus. Res. Inst. 2(1), 1–8 (2010)

    Google Scholar 

  12. Khiyaita, A., El Bakkali, H., Zbakh, M., El Kettani, D.: Load balancing cloud computing: state of art. In: 2012 National Days of Network Security and Systems, pp. 106–109. IEEE (2012)

    Google Scholar 

  13. Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann, Burlington (2013)

    Google Scholar 

  14. Lohr, S.: The age of big data. New York Times 11, 2012 (2012)

    Google Scholar 

  15. Kansal, N.J., Chana, I.: Cloud load balancing techniques: a step towards green computing. IJCSI Int. J. Comput. Sci. Issues 9(1), 238–246 (2012)

    Google Scholar 

  16. Escalante, D., Korty, A.J.: Cloud services: policy and assessment. Educause Rev. 46(4) (2011)

    Google Scholar 

  17. Rastogi, G., Sushil, R.: Analytical literature survey on existing load balancing schemes in cloud computing. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 1506–1510. IEEE (2015)

    Google Scholar 

  18. Kabiraj, S., Topkar, V., Walke, R.C.: Going green: a holistic approach to transform business. arXiv preprint arXiv:1009.0844 (2010)

  19. Baliga, J., Ayre, R.W.A., Hinton, K., Tucker, R.S.: Green cloud computing: balancing energy in processing, storage, and transport. Proc. IEEE 99(1), 149–167 (2010)

    Article  Google Scholar 

  20. Kushwaha, M., Gupta, S.: Various schemes of load balancing in distributed systems–a review. Int. J. Sci. Res. Eng. Technol. (IJSRET) 4(7), 741–748 (2015)

    Google Scholar 

  21. Jafarnejad Ghomi, E., Masoud Rahmani, A., Nasih Qader, N.: Load-balancing algorithms in cloud computing: a survey. J. Netw. Comput. Appl. 88, 50–71 (2017)

    Article  Google Scholar 

  22. Rathore, N., Chana, I.: Load balancing and job migration techniques in grid: a survey of recent trends. Wirel. Pers. Commun. 79(3), 2089–2125 (2014)

    Article  Google Scholar 

  23. Shah, N., Farik, M.: Static load balancing algorithms in cloud computing: challenges & solutions. Int. J. Sci. Technol. Res. 4(10), 365–367 (2015)

    Google Scholar 

  24. El-Zoghdy, S.F., Ghoniemy, S.: A survey of load balancing in high-performance distributed computing systems. Int. J. Adv. Comput. Res. 1 2014

    Google Scholar 

  25. Mirtaheri, S.L., Grandinetti, L.: Dynamic load balancing in distributed exascale computing systems. Cluster Comput. 20(4), 3677–3689 (2017)

    Article  Google Scholar 

  26. Khaneghah, E.M., Nezhad, N.O., Mirtaheri, S.L., Sharifi, M., Shirpour, A.: An efficient live process migration approach for high performance cluster computing systems. In: Pichappan, P., Ahmadi, H., Ariwa, E. (eds.) INCT 2011. CCIS, vol. 241, pp. 362–373. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27337-7_34

    Chapter  Google Scholar 

  27. Sharma, G.: A review on different approaches for load balancing in computational grid. J. Glob. Res. Comput. Sci. 4(4), 82–85 (2013)

    Google Scholar 

  28. Arab, M.N., Mirtaheri, S.L., Khaneghah, E.M., Sharifi, M., Mohammadkhani, M.: Improving learning-based request forwarding in resource discovery through load-awareness. In: Hameurlain, A., Tjoa, A.M. (eds.) Globe 2011. LNCS, vol. 6864, pp. 73–82. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22947-3_7

    Chapter  Google Scholar 

  29. Samal, P., Mishra, P.: Analysis of variants in round robin algorithms for load balancing in cloud computing. Int. J. Comput. Sci. Inf. Technol. 4(3), 416–419 (2013)

    Google Scholar 

  30. Al Nuaimi, K., Mohamed, N., Al Nuaimi, M., Al-Jaroodi, J.: A survey of load balancing in cloud computing: challenges and algorithms. In: 2012 Second Symposium on Network Cloud Computing and Applications, pp. 137–142. IEEE (2012)

    Google Scholar 

  31. Wang, S.-C., Yan, K.-Q., Liao, W.-P., Wang, S.-S.: Towards a load balancing in a three-level cloud computing network. In: 2010 3rd International Conference on Computer Science and Information Technology, vol. 1, pp. 108–113. IEEE (2010)

    Google Scholar 

  32. Sahu, Y., Pateriya, R.K.: Cloud computing overview with load balancing techniques. Int. J. Comput. Appl. 65(24) (2013)

    Google Scholar 

  33. Kokilavani, T., Amalarethinam, D.I.G., et al.: Load balanced min-min algorithm for static meta-task scheduling in grid computing. Int. J. Comput. Appl. 20(2), 43–49 (2011)

    Article  Google Scholar 

  34. Jamuna, P., Kumar, R.A.: Optimized cloud partitioning technique to simplify load balancing. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(11), 820–822 (2013)

    Google Scholar 

  35. LD, D.B., Krishna, P.V.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013)

    Google Scholar 

  36. Wu, T.-Y., Lee, W.-T., Lin, Y.-S., Lin, Y.-S., Chan, H.-L., Huang, J.-S.: Dynamic load balancing mechanism based on cloud storage. In: 2012 Computing, Communications and Applications Conference, pp. 102–106. IEEE (2012)

    Google Scholar 

  37. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm i. Continuous parameter optimization. Evol. Comput. 1(1), 25–49 (1993)

    Article  Google Scholar 

  38. Grosu, D., Chronopoulos, A.T.: Noncooperative load balancing in distributed systems. J. Parallel Distrib. Comput. 65(9), 1022–1034 (2005)

    Article  Google Scholar 

  39. Lingawar, R.P., Srode, M.V., Ghonge, M.M.: Survey on load-balancing techniques in cloud computing. Int. J. Advent Res. Comput. Electron. 1(3), 18–21 (2014)

    Google Scholar 

  40. Bareen, S., Shinde, K., Borde, S.: Challenges of big data processing and scheduling of processes using various hadoop schedulers: a survey. Int. J. Multifaceted Multilingual Stud. 3(12) (2017)

    Google Scholar 

  41. Zaharia, M.: Job scheduling with the fair and capacity schedulers. Hadoop Summit 9 (2009)

    Google Scholar 

  42. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In: Proceedings of the 5th European Conference on Computer Systems, pp. 265–278. ACM (2010)

    Google Scholar 

  43. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with mapreduce: a survey. AcM sIGMoD Rec. 40(4), 11–20 (2012)

    Article  Google Scholar 

  44. Kc, K., Anyanwu, K.: Scheduling hadoop jobs to meet deadlines. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp. 388–392. IEEE (2010)

    Google Scholar 

  45. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-scale cluster management at Google with Borg. In: Proceedings of the Tenth European Conference on Computer Systems, p. 18. ACM (2015)

    Google Scholar 

  46. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible, scalable schedulers for large compute clusters (2013)

    Google Scholar 

  47. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low latency scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 69–84. ACM (2013)

    Google Scholar 

  48. Karanasos, K.: Mercury: hybrid centralized and distributed scheduling in large shared clusters. In: 2015 \(\{\)USENIX\(\}\) Annual Technical Conference (\(\{\)USENIX\(\}\)\(\{\)ATC\(\}\) 15), pp. 485–497 (2015)

    Google Scholar 

  49. Vavilapalli, V.K., et al.: Apache hadoop yarn: yet another resource negotiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing, p. 5. ACM (2013)

    Google Scholar 

  50. Achar, R., Thilagam, P.S., Soans, N., Vikyah, P.V., Rao, S., Vijeth, A.M.: Load balancing in cloud based on live migration of virtual machines. In: 2013 Annual IEEE India Conference (INDICON), pp. 1–5. IEEE (2013)

    Google Scholar 

  51. Daraghmi, E.Y., Yuan, S.-M.: A small world based overlay network for improving dynamic load-balancing. J. Syst. Softw. 107, 187–203 (2015)

    Article  Google Scholar 

  52. Dam, S., Mandal, G., Dasgupta, K., Dutta, P.: Genetic algorithm and gravitational emulation based hybrid load balancing strategy in cloud computing. In: Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), pp. 1–7. IEEE (2015)

    Google Scholar 

  53. Zhao, Y., Huang, W.: Adaptive distributed load balancing algorithm based on live migration of virtual machines in cloud. In: 2009 Fifth International Joint Conference on INC, IMS and IDC, pp. 170–175. IEEE (2009)

    Google Scholar 

  54. Zhang, Z., Zhang, X.: A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation. In: 2010 The 2nd International Conference on Industrial Mechatronics and Automation, vol. 2, pp. 240–243. IEEE (2010)

    Google Scholar 

  55. Zhu, K., Song, H., Liu, L., Gao, J., Cheng, G.: Hybrid genetic algorithm for cloud computing applications. In: 2011 IEEE Asia-Pacific Services Computing Conference, pp. 182–187. IEEE (2011)

    Google Scholar 

  56. Nishant, K., et al.: Load balancing of nodes in cloud using ant colony optimization. In: 2012 UKSim 14th International Conference on Computer Modelling and Simulation, pp. 3–8. IEEE (2012)

    Google Scholar 

  57. Yao, J., He, J.: Load balancing strategy of cloud computing based on artificial bee algorithm. In: 2012 8th International Conference on Computing Technology and Information Management (NCM and ICNIT), vol. 1, pp. 185–189. IEEE (2012)

    Google Scholar 

  58. Aslanzadeh, S., Chaczko, Z.: Load balancing optimization in cloud computing: applying endocrine-particale swarm optimization. In: 2015 IEEE International Conference On Electro/Information Technology (Eit), pp. 165–169. IEEE (2015)

    Google Scholar 

  59. Sun, W., Ji, Z., Sun, J., Zhang, N., Hu, Y.: Saaco: a self adaptive ant colony optimization in cloud computing. In: 2015 IEEE Fifth International Conference on Big Data and Cloud Computing, pp. 148–153. IEEE (2015)

    Google Scholar 

  60. Wen, W.-T., Wang, C.-D., Wu, D.-S., Xie, Y.-Y.: An ACO-based scheduling strategy on load balancing in cloud computing environment. In: 2015 Ninth International Conference on Frontier of Computer Science and Technology, pp. 364–369. IEEE (2015)

    Google Scholar 

  61. Pan, K., Chen, J.: Load balancing in cloud computing environment based on an improved particle swarm optimization. In: 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 595–598. IEEE (2015)

    Google Scholar 

  62. Babu, K.R.R., Joy, A.A., Samuel, P.: Load balancing of tasks in cloud computing environment based on bee colony algorithm. In: 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), pp. 89–93. IEEE (2015)

    Google Scholar 

  63. Wang, T., Liu, Z., Chen, Y., Xu, Y., Dai, X.: Load balancing task scheduling based on genetic algorithm in cloud computing. In: 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, pp. 146–152. IEEE (2014)

    Google Scholar 

  64. Rana, M., Bilgaiyan, S., Kar, U.: A study on load balancing in cloud computing environment using evolutionary and swarm based algorithms. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 245–250. IEEE (2014)

    Google Scholar 

  65. Gupta, E., Deshpande, V.: A technique based on ant colony optimization for load balancing in cloud data center. In: 2014 International Conference on Information Technology, pp. 12–17. IEEE (2014)

    Google Scholar 

  66. Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D.: Cloud task scheduling based on load balancing ant colony optimization. In 2011 Sixth Annual ChinaGrid Conference, pp. 3–9. IEEE (2011)

    Google Scholar 

  67. Kaur, R., Ghumman, N.: Hybrid improved max min ant algorithm for load balancing in cloud. In: Proceedings of the International Conference on Communication, Computing and Systems (CCS 2014), pp. 188–191 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Aghdashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aghdashi, A., Mirtaheri, S.L. (2019). A Survey on Load Balancing in Cloud Systems for Big Data Applications. In: Grandinetti, L., Mirtaheri, S., Shahbazian, R. (eds) High-Performance Computing and Big Data Analysis. TopHPC 2019. Communications in Computer and Information Science, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-33495-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33495-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33494-9

  • Online ISBN: 978-3-030-33495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics