Skip to main content

A Review of the Parallel Structure Mechanisms with Kinematic Decoupling

  • Conference paper
  • First Online:
Advanced Technologies in Robotics and Intelligent Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 80))

Abstract

This paper presents some results of the kinematic decoupling development of translational and rotational motions in the mechanisms of parallel structure. Most of the mechanisms have complex associated kinematic characteristics when translational motion can be kinematically related to rotational motion and vice versa. Therefore, the kinematical and mathematical models of the mechanism are complex and as a result it is difficult to control. The mechanisms with kinematic decoupled are those in which some actuators control a few pose parameters, for example, the position of the platform, while the remaining actuators control the rest of pose parameters, for example the orientation. This fact makes one of the actual tasks in the study of the spatial mechanisms of the parallel structure to identify the possibility of the implementation of the kinematic decoupling that simplifies the calculation of the mechanisms and is an advantage over the calculation of similar mechanisms without kinematic decoupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merlet, J.-P.: Parallel Robots, 2nd edn. Springer, Netherlands (2006)

    MATH  Google Scholar 

  2. Gogu, G.: Structural Synthesis of Parallel Robots. Part 2: Translational Topologies with Two and Three Degrees of Freedom. Springer, Netherlands (2009)

    Google Scholar 

  3. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education International, USA (2005)

    Google Scholar 

  4. Glazunov, V.A., Koliscor, A.S., Kraynev, A.F.: Spatial parallel structure mechanisms (Prostranstvennye mekhanizmy parallel’noy struktury) (In Russian). Nauka, Moscow (1991)

    Google Scholar 

  5. Dimentberg, F.M.: The screws method in Applied Mechanics (Metod vintov v prikladnoy mekhanike) (In Russian). Mashinostroenie, Moscow (1971)

    Google Scholar 

  6. Korendyasev, A.I., Salamandra, B.L., Tyves, L.I., et al.: Manipulation systems of robots (Manipulyatsionnyye sistemy robotov) (In Russian). Mashinostroenie, Moscow (1989)

    Google Scholar 

  7. Misyurin, SYu., Kreinin, G.V., Markov, A.A., Sharpanova, N.S.: Determination of the degree of mobility and solution of the direct kinematic problem for an analogue of a delta robot. J. Mach. Manuf. Reliab. 45(5), 403–411 (2016)

    Article  Google Scholar 

  8. Clavel, R.: Delta: a fast robot with parallel geometry. In: 18th International Symposium on Industrial Robot, pp. 91–100. IFS Publication, Lausanne (1988)

    Google Scholar 

  9. Carricato, M., Parenti-Castelli, V.: A family of 3-DOF translational parallel manipulators. J. Mech. Des. 125(2), 302–307 (2003)

    Article  Google Scholar 

  10. Dasgupta, B., Mruthyunjaya, T.S.: Stewart platform manipulator: a review. Mech. Mach. Theory 35(1), 15–40 (2000)

    Article  MathSciNet  Google Scholar 

  11. Wenger, P., Chablat, D.: Kinematic analysis of a new parallel machine tool: The Orthoglide. Advances in Robot Kinematics, 305–314 (2000)

    Google Scholar 

  12. Innocenti, C., Parenti-Castelli, V.: Direct kinematics of the 6-4 fully parallel manipulator with position and orientation uncoupled. Robot. Syst. 10, 3–10 (1992)

    Article  Google Scholar 

  13. Bernier, D., Castelain, J.M., Li, X.: A new parallel structure with 6 degrees of freedom. In: Proceedings of the 9th World Congress on the Theory of Machines and Mechanism, pp. 8-12. Milan, Italy (2005)

    Google Scholar 

  14. Zabalza I., Ros J., Gil J., Pintor J.M., Jimenez J.M.: TRI-SCOTT. A new kinematic structure for a 6-dof decoupled parallel manipulator. In: Proceedings of the Workshop on fundamental issues and future research directions for parallel mechanisms and manipulators, pp. 12–15. Quebec City, Canada (2002)

    Google Scholar 

  15. Takeda, Y., Kamiyama, K., Maki, Y., Higuchi, M., Sugimoto, K.: Development of position-orientation decoupled spatial in-parallel actuated mechanisms with six degrees of freedom. J. Robot. Mechatron. 17(1), 59–68 (2005)

    Article  Google Scholar 

  16. Briot, S.: Analysis and Optimization of a New Family of Parallel Manipulators with Decoupled Motions. HAL: archives-ouvertes, France (2007)

    Google Scholar 

  17. Briot, S., Arakelian, V., Guégan, S.: PAMINSA: a new family of partially decoupled parallel manipulators. Mech. Mach. Theory 44(2), 425–444 (2009)

    Article  Google Scholar 

  18. Glazunov, V.: Design of decoupled parallel manipulators by means of the theory of screws. Mech. Mach. Theory 45(2), 239–250 (2010)

    Article  Google Scholar 

  19. Rashoyan, G.V.: Structural synthesis of parallel structure robots based on the theory of screws and on concepts of reciprocity. Tech. Sci. 12(4), 771–776 (2016)

    Google Scholar 

  20. Tyves, L.I.: Synthesis of a new 3x2 parallel structure mechanism with full group kinematic isolation (Sintez novogo mekhanizma parallel’noy struktury 3x2 s polnoy gruppovoy kinematicheskoy razvyazkoy) (In Russian), pp. 121–130. Tekhnosfera, Moscow (2018)

    Google Scholar 

  21. Kong, X., Gosselin, C.M.: Type synthesis of input-output decoupled parallel manipulators. Trans. Can. Soc. Mech. Eng. 28(2A), 185–196 (2004)

    Article  Google Scholar 

  22. Jin, Q., Yang, T.L.: Synthesis and analysis of a group of 3-degree-of-freedom partially decoupled parallel manipulators. J. Mech. Des. 126(2), 301–306 (2004)

    Article  Google Scholar 

  23. Kim, H.S., Tsai, L.W.: Design optimization of a Cartesian parallel manipulator. J. Mech. Des. 125(1), 43–51 (2003)

    Article  Google Scholar 

  24. Carricato, M., Parenti-Castelli, V.: A novel fully decoupled two-degrees-of freedom parallel wrist. Int. J. Robot. Res. 23(6), 661–667 (2004)

    Article  Google Scholar 

  25. Li, W., Gao, F., Zhang, J.: R-CUBE, a decoupled parallel manipulator only with revolute joints. Mech. Mach. Theory 40(4), 467–473 (2005)

    Article  Google Scholar 

  26. Ting, Y., Chen, Y.-S., Jar, H.-C., Kang, Y.: Modeling and control for a Gough-Stewart platform CNC machine. In: Proceedings of the 2004 IEEE International Conference on Robotics & Automation, pp. 535–540. IEEE, New Orleans, LA, USA (2004)

    Google Scholar 

  27. Shaw, D., Chen, Y.-S.: Cutting path generation of the Stewart-platform-based milling machine using an end-mill. Int. J. Prod. Res. 39(7), 1367–1383 (2010)

    Article  Google Scholar 

  28. Wapler, M., Urban, V., Weisener, T., Stallkamp, J., Dűrr, M., Hiller, A.: A Stewart platform for precision surgery. Trans. Inst. Meas. Control. 25(4), 329–334 (2003)

    Article  Google Scholar 

  29. Girone, M., Burdea, G., Bouzit, M., Popescu, V., Deutsch, J.E.: A Stewart platform-based system for ankle telerehabilitation. Auton. Robot. 10(2), 203–212 (2001)

    Article  Google Scholar 

  30. Saltaren, R., Aracil, R., Reinoso, O., Scarano, M.A.: Climbing parallel robot: a computational and experimental study of its performance around structural nodes. IEEE Trans. Rob. 21(6), 1056–1066 (2005)

    Article  Google Scholar 

  31. Saltarén, R., Aracil, R., Alvarez, C., Yime, E., Sabater, J.M.: Underwater parallel robot for works on submarine disasters. In: Symposium on Marine Accidental oil Spills VERTIMAR-2007, p. 35. University of Vigo, Galicia, Spain (2007)

    Google Scholar 

  32. Di Gregorio, R.: Kinematics analysis and singularities of novel decoupled parallel manipulators with simplified architecture. Robotica 35(4), 961–979 (2017)

    Article  Google Scholar 

  33. Di Gregorio, R.: A new decoupled parallel manipulator. In: Proceedings of the 10th International Workshop on Robotics, Vienna, Austria (2001)

    Google Scholar 

  34. Lallemand, J.P., Goudali, A., Zeghloul, S.: The 6-Dof 2-Delta parallel robot. Robotica 15(4), 407–416 (1997)

    Article  Google Scholar 

  35. Mianowski, K.: Singularity analysis of parallel manipulator POLMAN 3×2 with six degrees of freedom. In: 12th IFToMM World Congress, pp. 1–6. Besançon, France (2007)

    Google Scholar 

  36. Yime, E., Moreno, H., Saltaren, R.: A novel 6 DOF parallel robot with decoupled translation and rotation. In: 13th World Congress in Mechanism and Machine Science, pp. 1–6. Guanajuato, Mexico (2011)

    Google Scholar 

  37. Zanganeh, K.E., Angeles, J.: Instantaneous kinematics and design of a novel redundant parallel manipulator. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3043–3048. IEEE, San Diego, CA, USA (1994)

    Google Scholar 

  38. Song, S.-K., Kwon, D.-S., Kim, W.S.: Spherical joint for coupling three or more links together at one point. Patent US 6,568,871 B2 (2003)

    Google Scholar 

  39. Bosscher, P., Elbert-Upholf, I.: A novel mechanism for implementing multiple collocated spherical joints. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 336–341. IEEE, Taipei, Taiwan (2003)

    Google Scholar 

  40. Jin, Y., Chen, I.-M., Yang, G.: Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. IEEE Trans. Rob. 22(3), 545–551 (2006)

    Article  Google Scholar 

  41. Chablat, D., Wenger, P.: United States Patent Application Publication. Pub. No.: US 2007/0062321 Al. Pub. Date: Mar. 22, 2007. Device for the movement and orientation of an object in space and use thereof in rapid machining. Sainte Luce Sur Loire (FR)

    Google Scholar 

  42. Gosselin, C.M., Hamel, J.F.: The agile eye: a high performance three-degree-of-freedom camera-orienting device. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 781–786. IEEE, San Diego, CA, USA (1994)

    Google Scholar 

  43. Chablat, D., Wenger, P.A.: Six degree-of-freedom haptic device based on the Orthoglide and a hybrid Agile Eye. In: Proceeding of 2006 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: Vol. 2: 30th Annual Mechanisms & Robotics Conference (MR), Parts A and B, pp. 795–802. ASME, Philadelphia, USA (2006)

    Google Scholar 

  44. Nosova, N.Y., Glazunov, V.A., Palochkin, S.V., Terekhova, A.N.: Synthesis of mechanisms of parallel structure with kinematic interchange. J. Mach. Manuf. Reliab. 43(5), 378–383 (2014)

    Article  Google Scholar 

  45. Nosova, N.Yu., Glazunov, V.A., Palochkin, S.V., Kheylo S.V.: Russian Federation Patent Application Publication for invention. Pub. No: RU 2534706 C1. Al. Pub. Date: Des. 10, 2014. Spatial mechanism with four degrees of freedom (RU)

    Google Scholar 

  46. Nosova, N.Yu., Glazunov, V.A., Palochkin, S.V., Kheylo S.V.: Russian Federation Patent Application Publication for utility modul. Pub. No: RU 135283 U1. Al. Pub. Date: Des. 10, 2013. Spatial mechanism with five degrees of freedom (RU)

    Google Scholar 

  47. Nosova, N.Yu., Glazunov, V.A., Palochkin, S.V., Kheylo S.V., Komisaruk L.B.: Russian Federation Patent Application Publication for invention. Pub. No: RU 2536735 C1. Al. Pub. Date: Des. 27, 2014. Spatial mechanism with six degrees of freedom (RU)

    Google Scholar 

  48. Arakelian, V., Xu, J., Le Baron, J.P.: Dynamic decoupling of robot manipulators: a review with New examples. Mech. Mach. Sci. 56, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  49. Nosova, N.Yu., Glazunov, V.A., Thanh, N.M.: Task of control of parallel mechanism for given law of motion. In: Proceeding of the 2015 IFToMM 14th International Federation for the Promotion of Mechanism and Machine Science World Congress, vol. 3, pp. 1632–1636. IFToMM, Taipei, Taiwan (2015)

    Google Scholar 

  50. Glazunov, V., Nosova, N., Kheylo, S., Tsarkov, A.: Design and analysis of the 6-DOF decoupled parallel kinematics mechanism. Mech. Mach. Sci. 56, 125–170 (2018)

    Article  MathSciNet  Google Scholar 

  51. Nosova, N.Yu., Glazunov, V.A.: Synthesis, analysis and control of mechanisms with three kinematic chains for additive technologies (Sintez, analiz i upravleniye mekhanizmami s tremya kinematicheskimi tsepyami dlya additivnykh tekhnologiy) (In Russian), pp. 89–120. Tekhnosfera, Moscow (2018)

    Google Scholar 

  52. Sobol, I.M.: Multidimensional quadrature formulas and Haar functions (Mnogomernye kvadraturnye formuly i funktsii Khaara) (In Russian). Nauka, Moscow (1969)

    Google Scholar 

  53. Misyurin, S.Y., Nelyubin, A.P., Potapov, M.A.: Multicriteria approach to control a population of robots to find the best solutions. In: Samsonovich, A. (ed.) Biologically Inspired Cognitive Architectures. BICA 2019. Advances in Intelligent Systems and Computing, vol. 948, pp. 358–363. Springer, Seattle; United States (2019)

    Google Scholar 

  54. Misyurin, SYu., Kreinin, G.V.: Power Optimization criteria of a mechanical unit of an automated actuator. Dokl. Phys. 60(1), 15–18 (2015)

    Article  Google Scholar 

  55. Kreinin, G.V., Misyurin, SYu.: Phased synthesis of a mechatronic system. Dokl. Phys. 59(11), 539–543 (2014)

    Article  Google Scholar 

  56. Misyurin, SYu., Ivlev, V.I., Bozrov, V.M., Nelyubin, A.P.: Parameterization of an air motor based on multiobjective optimization and decision support. J. Mach. Manuf. Reliab. 42(5), 353–358 (2013)

    Article  Google Scholar 

  57. Nelyubin, A.P., Galkin, T.P., Galaev, A.A., Popov, D.D., Misyurin, SYu., Pilyugin, V.V.: Usage of visualization in the solution of multicriteria choice problems. Sci. Vis. 9(5), 59–70 (2017)

    Google Scholar 

  58. Misyurin, S.Yu., Nelyubin, A.P., Ivlev, V.I.: Multicriteria adaptation of robotic groups to dynamically changing conditions. J. Phys.: Conf. Series. 788(1), 012027 (3 pages) (2017)

    Google Scholar 

Download references

Acknowledgements

The research was supported by Russian Foundation for Basic Research, project No. 18-29-10072 mk (Optimization of nonlinear dynamic models of robotic drive systems taking into account forces of resistance of various nature, including frictional forces).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Nosova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nosova, N.Y. (2020). A Review of the Parallel Structure Mechanisms with Kinematic Decoupling. In: Misyurin, S., Arakelian, V., Avetisyan, A. (eds) Advanced Technologies in Robotics and Intelligent Systems. Mechanisms and Machine Science, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-33491-8_30

Download citation

Publish with us

Policies and ethics