Skip to main content

Spatiotemporal Assessment of Phytoplankton Communities in the Chilika Lagoon

  • Chapter
  • First Online:
Ecology, Conservation, and Restoration of Chilika Lagoon, India

Part of the book series: Wetlands: Ecology, Conservation and Management ((WECM,volume 6))

Abstract

Phytoplankton are the primary producers in aquatic ecosystem and play crucial role in the nutrient cycling, carbon fixation, and regulating the overall food-web dynamics. In addition to ensuring ecological services, phytoplankton species composition is also considered an efficient bio-indicator of the water quality. Thus, phytoplankton composition, diversity, and their distribution could be used as a biological proxy to assess the ecological health of a water body. Considering the ecological significance of phytoplankton, various studies have targeted them to understand their spatiotemporal variation and environmental drivers in the Chilika lagoon. Phytoplankton community structure of Chilika lagoon is influenced by several environmental factors (nutrients, light, and salinity) of which salinity predominantly determines the composition and distribution of phytoplankton communities. In Chilika lagoon, spatial variation in salinity regime provides a variety of habitats (e.g. oligohaline (0–5 ppt), mesohaline (5–18 ppt), and polyhaline (>18 ppt)) for the proliferation of freshwater, estuarine, and marine phytoplankton forms. Based on the published literature, a total of 739 phytoplankton species have been documented from the Chilika lagoon, which included a diverse assemblage of species spectrum represented by Bacillariophyta (270 species), Dinophyta (88 species), Cyanophyta (103 species), Chlorophyta (178 species), Euglenophyta (92 species), Chrysophyta (5 species) and Xanthophyta (3 species). Among these, Bacillariophyta has been shown to be the most diverse and abundant in the phytoplankton communities. The total inventory of 709 phytoplankton species during the post-restoration study (2000–2014) included 612 new records which were documented for the first time from Chilika lagoon. Long-term systemic monitoring of phytoplankton is essential to understand their intrinsic spatiotemporal variability and also to recover maximum species diversity in lagoon. Further, continuous and detailed observation of phytoplankton community is necessary to monitor the occurrence of toxic species and harmful algal blooms. In addition to the application of classical microscopy based taxonomic approach to document phytoplankton species diversity, efforts should also be directed to integrate the molecular tools such as high-throughput DNA sequencing to understand the genetic diversity of smaller size nano-phytoplankton and pico- phytoplankton in the lagoon ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary SP, Sahu JK (1992) Distribution and seasonal abundance of algal forms in Chilika Lake, east coast of India. Jpn J Limnol 53:197–205

    Google Scholar 

  • Alkawri AAS, Ramaiah N (2010) Spatio-temporal variability of dinoflagellate assemblages in different salinity regimes in the West Coast of India. Harmful Algae 9:153–162

    Google Scholar 

  • Aquino EP, Figueiredo LGP, Borges GCP, Ferreira LC, Passavante JZDO, Gloria MD, Silva-Cunha GD (2015) Seasonal and spatial variation in phytoplankton community structure of an estuary in Northeastern Brazil. Trop Ecol 56(1):125–131

    Google Scholar 

  • Bec B, Collos Y, Souchu P, Vaquer A, Lautier J, Fiandrino A, Benau L, Orsoni V, Laugier T (2011) Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat Microb Ecol 63:29–45. http://sci-hub.tw/10.3354/ame01480

  • Biswas K (1932) Algal flora of the Chilika lake. Mem Asiat Soc Bengal 11:65–198

    Google Scholar 

  • Brewin RJW, Lavender SJ, Hardman-Mountford NJ, Hirata T (2010) A spectral response approach for detecting dominant phytoplankton size class from satellite remote sensing. Acta Oceanol Sin 29(2):14–32. http://sci-hub.tw/10.1007/s13131-010-0018-y

  • Brogueira MJ, Oliveira MDR, Cabeçadas G (2007) Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal. Mar Environ Res 64(5):1–29. http://sci-hub.tw/10.1016/j.marenvres.2007.06.007

  • Burkholder JM, Glibert PM, Skelton HM (2008) Mixotrophy, a major mode of nutrition for harmful algal species in coastal waters. Harmful Algae 8:77–93

    Google Scholar 

  • Cabeçadas L (1999) Phytoplankton production in Tagus estuary (Portugal). Oceanol Acta 22:51–65

    Google Scholar 

  • Canini ND, Metillo EB, Azanza RV (2013) Monsoon influenced phytoplankton community structure in a Philippine mangrove estuary. Trop Ecol 54(3):331–343

    Google Scholar 

  • Chen B, Xu Z, Zhou Q, Chen C, Gao Y, Yang S, Ji W (2010) Long-term changes of phytoplankton community in Xiagu waters of Xiamen, China. Acta Oceanol Sin 29(6):104–114. http://sci-hub.tw/10.1007/s13131-010-0081-4

  • Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK (2010) Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4:1053–1059. http://sci-hub.tw/10.1038/ismej.2010.26

  • Chu TV, Torréton J-P, Mari X, Nguyen HMT, Pham KT, Pham TT, Bouvier T, Bettarel Y, Pringault O, Bouvier C, Rochelle-Newall E (2014) Nutrient ratios and the complex structure of phytoplankton communities in a highly turbid estuary of Southeast Asia. Environ Monit Assess 186(12):8555–8572. http://sci-hub.tw/10.1007/s10661-014-4024-y

  • Cloern JE, Dufford R (2005) Phytoplankton community ecology: principles applied in San Francisco Bay. Mar Ecol Prog Ser 285:11–28

    Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Google Scholar 

  • Cremer H, Sangiorgi F, Wagner-Cremer F, Mcgee V, Lotter AF, Visscher H (2007) Diatoms (Bacillariophyceae) and Dinoflagellate Cysts (Dinophyceae) from Rookery Bay, Florida, USA. Caribb J Sci 43:23–58

    Google Scholar 

  • Daugbjerg N, Henriksen P (2001) Pigment composition and rbcL sequence data from the silicoflagellate Dictyocha speculum: a heterokont alga with pigments similar to some haptophytes. J Phycol 37:1110–1120

    Google Scholar 

  • Dawson EY (1966) Marine botany: an introduction. Holt, Rinehart and Winston, New York. 371p

    Google Scholar 

  • Devasundaram MP, Roy JC (1954) A preliminary study of the plankton of the Chilka Lake for the year 1950–1951. In: Symposium on marine and fresh-water plankton in the Indo-Pacific, Indo-Pacific, Fish. Com. Publication, pp 1–7

    Google Scholar 

  • Diez B, Pedros-Alio C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67(7):2932–2941

    Google Scholar 

  • Gaines G, Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed) The biology of dinoflagellates. Botanical monograph, vol 21. Blackwell Scientific Publications, Oxford, pp 224–268

    Google Scholar 

  • Ganguly D, Patra S, Muduli PR, Vishnu Vardhan K, Abhilas KR, Robin RS, Subramanian BR (2015) Influence of nutrient input on the trophic state of a tropical brackish water lagoon. J Earth Syst Sci 124(5):1005–1017

    Google Scholar 

  • George B, Nirmal Kumar JI, Kumar RN (2012) Study on the influence of hydro-chemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. Egypt J Aqua Res 38:157–170

    Google Scholar 

  • Gle G, Amo YD, Sautour B, Laborde P, Chardy P (2008) Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem (Arcachon Bay, France). Estuar Coast Shelf Sci 76:642–656

    Google Scholar 

  • Glibert PM, Legrand C (2006) The diverse nutrient strategies of harmful algae: focus on osmotrophy. In: Granéli E, Turner J (eds) The ecology of harmful algae. Springer, New York, pp 163–176

    Google Scholar 

  • Goebel NL, Edwards CA, Zehr JP, Follows MJ, Morgan SG (2013) Modeled phytoplankton diversity and productivity in the California current system. Ecol Model 264:37–47. http://sci-hub.tw/10.1016/j.ecolmodel.2012.11.008

  • Goma J, Rimet F, Cambra J, Hoffmann L, Ector L (2005) Diatom communities and water quality assessment in Mountain Rivers of the upper Segre basin (La Cerdanya, Oriental Pyrenees). Hydrobiologia 551:209–225

    Google Scholar 

  • Gómez F, Gorsky G (2003) Annual microplankton cycles in Villefranche Bay, Ligurian Sea, NW Mediterranean. J Plankton Res 25(4):323–339

    Google Scholar 

  • Guerrero F, Rodriguez V (1998) Existence and significance of Acartia grani resting eggs (Copepoda: Calanoida) in sediments of a coastal station in the Alboran Sea (SE Spain). J Plankton Res 20:305–314

    Google Scholar 

  • Gupta GVM, Sarma VVSS, Robin RS, Raman AV, Kumar M, Rakesh M, Subramanian BR (2008) Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India). Biogeochemistry 87(3):265–285

    Google Scholar 

  • Harris JM, Vinobaba P (2012) Impact of water quality on species composition and seasonal fluctuation of plankton of Batticaloa lagoon, Sri Lanka. J Ecosyst Ecogr 2(4):1–6. http://sci-hub.tw/10.4172/2157-7625.1000117

  • Harsha TS, Malammanavar SG (2004) Assessment of phytoplankton density in relation to environmental variables in Gopalaswamy pond at Chitradurga, Karnataka. J Environ Biol 25:113–116

    Google Scholar 

  • Henriksen P, Knipschildt F, Moestrup Ø, Thomsen HA (1993) Autoecology, life history and toxicology of the silicoflagellate Dictyocha speculum (Silicoflagellata, Dictyochophyceae). Phycologia 32:29–39

    Google Scholar 

  • Huang L, Jian W, Song X, Huang X, Liu S, Qian P, Yin K, Wu M (2004) Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Mar Pollut Bull 49:588–596

    Google Scholar 

  • Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45(2):65–91. http://sci-hub.tw/10.1007/s12601-010-0007-2

  • Jha BC, Vass KK, Panda S, Bhatta KS (2009) Algal biodiversity of Chilika lagoon. CIFRI, Barrackpore and CDA, Bhubaneswar, pp 1–144. ISSN 0970-616X

    Google Scholar 

  • Jochem F, Babenerd B (1989) Naked Dictyocha speculum—a new type of phytoplankton blooms in the Western Baltic. Mar Biol 103:373–379

    Google Scholar 

  • Kirchman DL, Suzuki Y, Garside C, Ducklow HW (1991) High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature, London 352:612–614

    Google Scholar 

  • Krebs CJ (1994) Ecology: the experimental analysis of distribution and abundance, 4th edn. Harper Collins College Publishers, New York, p 801

    Google Scholar 

  • Kudela RM, Peterson TD (2009) Influence of a buoyant river plume on phytoplankton nutrient dynamics: what controls standing stocks and productivity? J Geophys Res 114:15

    Google Scholar 

  • Kumar NSV, Hosmani SP (2006) Algal biodiversity in fresh water and related physic chemical factors. J Nat Environ Pollut Technol 5:37–40

    Google Scholar 

  • Laskar HS, Gupta S (2009) Phytoplankton diversity and dynamics of Chatla floodplain lake, Barak Valley, Assam, North East India – a seasonal study. J Environ Biol 30:1007–1012

    Google Scholar 

  • Leander BS, Keeling PJ (2004) Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from HSP90 and actin phylogenies. J Phycol 40:341–350

    Google Scholar 

  • Lie AAY, Wong CK, Lam JYC, Liu JH, Yung YK (2011) Changes in the nutrient ratios and phytoplankton community after declines in nutrient concentrations in a semi-enclosed bay in Hong Kong. Mar Environ Res 71(3):178–188. http://sci-hub.tw/10.1016/j.marenvres.2011.01.001

  • Lionard M, Muylaert K, Gansbeke DV, Vyverman W (2005) Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde river and estuary (Belgium/The Netherlands). Hydrobiologia 540:105–115. http://sci-hub.tw/10.1007/S10750-004-7123-X

  • Lueangthuwapranit C, Sampantarak U, Wongsai S (2011) Distribution and abundance of phytoplankton: influence of salinity and turbidity gradients in the Na Thap River, Songkhla Province, Thailand. J Coast Res 27(3):585–594. http://sci-hub.tw/10.2112/JCOASTRES-D-10-00123.1

  • Macedo MF, Duarte P, Mendes P, Ferreira JG (2001) Annual variation of environmental variables, phytoplankton species composition and photosynthetic parameters in a Costal lagoon. J Plankton Res 23(7):719–732

    Google Scholar 

  • Marshall HG (1993) Monitoring phytoplankton populations in the Chesapeake Bay, USA. Idee Ekologii Tom 3, Ser Szkice nr 2:45–60

    Google Scholar 

  • Martini E (1977) Systematics, distribution and stratigraphical application of silicoflagellates. In: Ramsey ATSE (ed) Oceanic micropaleontology. Academic, London, pp 1327–1343

    Google Scholar 

  • Masuda LSM, Moser GAO, Barrera-Alba JJ (2011) Variação temporal do fitoplâncton no estuarino de Santos (SP) [Temporal variation of phytoplankton in the Santos estuary]. Braz J Aquat Sci Technol 15:79–93

    Google Scholar 

  • McQuoid MR, Godhe A, Nordberg K (2002) Viability of phytoplankton resting stages in the sediments of a coastal Swedish fjord. Eur J Phycol 37:191–201

    Google Scholar 

  • Mohanty D, Adhikary SP (2013) Assessment of changes in the algal diversity of Chilika lagoon after opening of New Mouth to Bay of Bengal. J Water Resour Prot 5:611–623

    Google Scholar 

  • Mohanty SK, Mishra SS, Khan M, Mohanty RK, Mohapatra A, Pattnaik AK (2015) Ichthyofaunal diversity of Chilika Lake, Odisha, India: an inventory, assessment of biodiversity status and comprehensive systematic checklist (1916–2014). Check List 11(6):1–19. http://sci-hub.tw/10.15560/11.6.1817

  • Moreira-González A, Seisdedo-Losa M, Muñoz-Caravaca A, Comas-González A, Alonso-Hernández C (2014) Spatial and temporal distribution of phytoplankton as indicator of eutrophication status in the Cienfuegos Bay, Cuba. J Integr Coast Zone Manag 14(4):597–609

    Google Scholar 

  • Moreno-Díaz G, Rojas-Herrera AA, Violante-González J, González-González J, Acevedo JLR, Ibáñez SG (2015) Temporal variation in composition and abundance of phytoplankton species during 2011 and 2012 in Acapulco Bay, Mexico. Open J Mar Sci 5:358–367

    Google Scholar 

  • Mukherjee M, Karna SK, Suresh VR, Manna RK, Panda D, Sharma AP, Pati MK, Mandal S, Ali Y (2016) Dinoflagellate diversity and distribution in Chilika Lagoon with description of new records. Indian J Geo Mar Sci 45:999–1009

    Google Scholar 

  • Mukhopadhyay SK, Biswas H, De TK, Jana TK (2006) Fluxes of nutrients from the tropical river Hooghly at the land-ocean boundary of Sundarbans, NE Coast of Bay of Bengal. Indian J Mar Sys 6:9–21

    Google Scholar 

  • Myklestad SM (2000) Dissolved organic carbon from phytoplankton. In: Wangersky P (ed) The handbook of environmental chemistry [D], Marine chemistry. Springer, Berlin, pp 111–148

    Google Scholar 

  • Naik S, Acharya BC, Mohapatra A (2009) Seasonal variation of phytoplankton in Mahanadi estuary, east coast of India. Indian J Mar Sci 38:184–190

    Google Scholar 

  • Newton A, Icely JD, Cristina S, Brito A, Cardoso AC, Colijn F, Riva SD, Gertz F, Hansen JW, Holmer M, Ivanova K, Leppäkoski E, Canu DM, Mocenni C, Mudge S, Murray N, Pejrup M, Razinkovas A, Reizopoulou S, Pérez-Ruzafa A, Schernewski G, Schubert H, Carr L, Solidoro C, Viaroli P, Zaldívar JM (2014) An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar Coast Shelf Sci 140:95–122. http://sci-hub.tw/10.1016/j.ecss.2013.05.023

  • Newton A, Brito AC, Icely JD, Derolez V, Clara I, Angus S, Schernewski G, Inácio M, Lillebø AI, Sousa AI, Béjaoui B (2018) Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J Nat Conserv 44:50–65

    Google Scholar 

  • Ning X, Cloern JE, Cole BE (2000) Spatial and temporal variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limnol Oceanogr 45:695–702

    Google Scholar 

  • Olson RR, Olson MH (1989) Food limitation of planktotrophic marine invertebrate larvae: does it control recruitment success. Annu Rev Ecol Evol Syst 20:225–247

    Google Scholar 

  • Onodera J, Takahashi K (2005) Silicoflagellate fluxes and environmental variations in the northwestern North Pacific during December 1997–May 2000. Deep-Sea Res I 52:371–388

    Google Scholar 

  • Onyema IC (2013) Phytoplankton bio-indicators of water quality situations in the Iyagbe Lagoon, South-Western Nigeria. J Life Phy Sci 4(2):93–107

    Google Scholar 

  • Palleyi S, Kar RN, Panda CR (2011) Influence of water quality on the biodiversity of phytoplankton in Dhamra River Estuary of Odisha Coast, Bay of Bengal. J Appl Sci Environ Manag 15(1):69–74

    Google Scholar 

  • Pandey K (2015) Lakes warming faster than oceans and India’s Chilika is no exception: global study. http://www.downtoearth.org.in/news/lakes-warming-faster-than-oceans-and-india-s-chilika-is-no-exception-global-study-52243

  • Panigrahi S, Wikner J, Panigrahy RC, Satapathy KK, Acharya BC (2009) Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem Chilika Lagoon, India. Limnology 10:73–85

    Google Scholar 

  • Pasquaud S, David V, Lobry J, Girardin M, Sautour B, Elie P (2010) Exploitation of trophic resources by fish under stressful estuarine conditions. Mar Ecol Prog Ser 400:207–219

    Google Scholar 

  • Patil JS, Anil AC (2008) Temporal variation of diatom benthic propagules in a monsoon influenced tropical estuary. Cont Shelf Res 28(17):2404–2416. http://sci-hub.tw/10.1016/j.csr.2008.06.001

  • Patil JS, Anil AC (2011) Variations in phytoplankton community in a monsoon influenced tropical estuary. Environ Monit Assess 182:291–300

    Google Scholar 

  • Patnaik S (1973) Observation on the seasonal fluctuating of plankton in the Chilika lake. Ind J Fish 20:43–45

    Google Scholar 

  • Patnaik S, Sarkar SK (1976) Observations on the distribution of phytoplankton in Chilika lake. J Inland Fish Soc India 8:38–48

    Google Scholar 

  • Pérez-Ruzafa A, Marcos C, Pérez-Ruzafa IM, Pérez-Marcos M (2011) Coastal lagoons: “transitional ecosystems” between transitional and coastal waters. J Coast Conserv 15(3):369–392

    Google Scholar 

  • Perumal NV, Rajkumar M, Perumal P, Rajasekar KT (2009) Seasonal variations of plankton diversity in the Kaduviyar estuary, Nagapattinam, southeast coast of India. J Environ Biol 30(6):1035–1046

    Google Scholar 

  • Phlips EJ, Badylak S, Lynch TC (1999) Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol Oceanogr 44:1166–1175

    Google Scholar 

  • Prabhahar C, Saleshrani K, Enbarasan R (2011) Studies on the ecology and distribution of phytoplankton biomass in Kadalur coastal zone, Tamilnadu, India. Curr Bot 2(3):26–30

    Google Scholar 

  • Quinlan EL, Phlips EJ (2007) Phytoplankton assemblages across the marine to lowsalinity transition zone in a blackwater dominated estuary. J Plankton Res 29(5):401–416. http://sci-hub.tw/10.1093/plankt/fbm024

  • Rakhesh M, Madhavirani KSVKS, Charan Kumara B, Raman AV, Kalavati C, Prabhakara Rao Y, Rosamma S, Ranga Rao V, Gupta GVM, Subramanian BR (2015) Trophic–salinity gradients and environmental redundancy resolve mesozooplankton dynamics in a large tropical coastal lagoon. Reg Stud Mar Sci 1:72–84

    Google Scholar 

  • Raman AV, Satyanarayana C, Adiseshasai K, Phani Prakash K (1990) Phytoplankton characteristics of Chilka lake, a brackish water lagoon along east coast of India. Ind J Mar Sci 19(4):274–277

    Google Scholar 

  • Ramanathan G, Sugumar R, Jeevarathinam A, Rajarathinam K (2013) Studies of Cyanobacterial distribution in estuary region of southeastern coast of Tamilnadu. Indian J Algal Biomass Util 4(3):26–34

    Google Scholar 

  • Rath J, Adhikary SP (2008) Biodiversity assessment of algae in Chilika Lake, East Coast of India. In: Monitoring and modelling lakes and coastal environments. Springer, Dordrecht, pp 22–33

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea, vol 2. Wiley, New York, pp 26–77

    Google Scholar 

  • Resende P, Azeiteiro U, Pereira MJ (2005) Diatom ecological preferences in a shallow temperate estuary (Ria de Aveiro, Western Portugal). Hydrobiologia 544:77–88

    Google Scholar 

  • Rigual-Hernández AS, Bárcena MA, Sierro FJ, Flores JA, Hernnández-Almeida I, Sanchez-Vidal A, Palanquez A, Heussner S (2010) Seasonal to interannual variability and geographic distribution of the silicoflagellate fluxes in the Western Mediterranean. Mar Micropaleontol 77:46–57

    Google Scholar 

  • Rochelle-Newall EJ, Chu VT, Pringault O, Amouroux D, Arfi R, Bettarel Y, Bouvier T, Bouvier C, Got P, Nguyen TMH, Mari X, Navarro P, Duong TN, Cao TTT, Pham TT, Ouillon S, Torréton JP (2011) Phytoplankton distribution and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam). Mar Pollut Bull 62:2317–2329. http://sci-hub.tw/10.1016/j.marpolbul.2011.08.044

  • Sahoo D, Kumar S (2015) Xanthophyceae, euglenophyceae and dinophyceae. In: The algae world, volume 26 of the series cellular origin, life in extreme habitats and astrobiology, pp 259–305. http://sci-hub.tw/10.1007/978-94-017-7321-8_9

  • Sahu G, Mohanty AK, Samantara MK, Satpathy KK (2014) Seasonality in the distribution of dinoflagellates with special reference to harmful algal species in tropical coastal environment, Bay of Bengal. Environ Monit Assess 186:6627–6644. http://sci-hub.tw/10.1007/s10661-014-3878-3

  • Saify T, Chaghtai SA, Parveen A, Durrani A (1986) Hydrology and periodicity of phytoplankton in the sewage fed Motia pond, Bhopal (India). Geobios 13(5):199–203

    Google Scholar 

  • Samanta B, Bhadury P (2014) Analysis of diversity of chromophytic phytoplankton in a mangrove ecosystem using rbcL gene sequencing. J Phycol 50(2):328–340. http://sci-hub.tw/10.1111/jpy.12163

  • Saravanakumar A, Rajkumar M, Thivakaran GA, Serebiah JS (2008) Abundance and seasonal variations of phytoplankton in the creek waters of western mangrove of Kachchh-Gujarat. J Environ Biol 29:271–274

    Google Scholar 

  • Sasamal SK, Panigrahy RC, Misra S (2005) Asterionella blooms in the northwestern Bay of Bengal during 2004. Int J Remote Sens 26(17):3853–3858

    Google Scholar 

  • Selvaraj GSD, Thomas VJ, Khambadkar LR (2003) Seasonal variation of phytoplankton and productivity in the surf zone and backwater at Cochin. J Mar Biol Assoc India 45(1):9–19

    Google Scholar 

  • Sin Y, Wetzel RL, Anderson IC (2000) Seasonal variations of size-fractionated phytoplankton along the salinity gradient in the York River Estuary, Virginia (USA). J Plankton Res 22:1945–1960

    Google Scholar 

  • Sondergaard M, Riemann BJ, Orgensen NOG (1985) Extracellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos 45:323–332

    Google Scholar 

  • Srichandan S, Kim JY, Bhadury P, Barik SK, Muduli PR, Samal RN, Pattnaik AK, Rastogi G (2015a) Spatiotemporal distribution and composition of phytoplankton assemblages in a coastal tropical lagoon: Chilika, India. Environ Monit Assess 187:47. http://sci-hub.tw/10.1007/s10661-014-4212-9

  • Srichandan S, Kim JY, Kumar A, Mishra DR, Bhadury P, Muduli PR, Rastogi G (2015b) Interannual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon. Mar Pollut Bull 101(1):39–52

    Google Scholar 

  • Stal LJ (2012) Cyanobacterial mats and stromatolites. In: Whitton BA (ed) The ecology of cyanobacteria. Springer, London, pp 65–125

    Google Scholar 

  • Stevenson RJ, Pan Y (1999) Assessing environmental conditions in rivers and streams with diatoms. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environment and earth science. Cambridge University Press, Cambridge

    Google Scholar 

  • Takahashi K, Onodera J, Katsuki K (2009) Significant populations of seven-sided Distephanus (Silicoflagellata) in the sea-ice covered environment of the central Arctic Ocean, summer 2004. Micropaleontology 55:313–325

    Google Scholar 

  • Valdes-Weaver LM, Piehler MF, Pinckney JL, Howe KE, Rossignol K, Paerl HW (2006) Long-term temporal and spatial trends in phytoplankton biomass and class level composition in the hydrologically variable Neuse-Pimlico estuarine continuum, North Carolina, USA. Limnol Oceanogr 51(3):1410–1420

    Google Scholar 

  • Varona-Cordero F, GutiErrez-mendieta FJ, Castillo MEMd (2010) Phytoplankton assemblages in two compartmentalized coastal tropical lagoons (Carretas-Pereyra and Chantuto-Panzacola, Mexico). J Plankton Res 32(9):1283–1299. http://sci-hub.tw/10.1093/plankt/fbq043

  • Wehr JD, Descy JP (1998) Use of phytoplankton in large river management. J Phycol 34:741–749

    Google Scholar 

  • Wissel B, Fry B (2005) Tracing Mississippi River influences in estuarine food webs of coastal Louisiana. Oecology 144:659–672

    Google Scholar 

  • Xiao X, Sogge H, Lagesen K, Tooming-Klunderud A, Jakobsen KS, Rohrlack T (2014) Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS One 9(8):e106510

    Google Scholar 

  • Yoo KI (1991) Population dynamics of dinoflagellate community in Masan bay with a note on the impact of environmental parameters. Mar Pollut Bull 23:185–188

    Google Scholar 

  • Zhang X, Zhang J, Huang X, Huang L (2014) Phytoplankton assemblage structure shaped by key environmental variables in the Pearl River Estuary, South China (2014). J Ocean Univ China 13:73–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srichandan, S., Rastogi, G. (2020). Spatiotemporal Assessment of Phytoplankton Communities in the Chilika Lagoon. In: Finlayson, C., Rastogi, G., Mishra, D., Pattnaik, A. (eds) Ecology, Conservation, and Restoration of Chilika Lagoon, India. Wetlands: Ecology, Conservation and Management, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-33424-6_11

Download citation

Publish with us

Policies and ethics