Skip to main content

A Computational Comparison of Parallel and Distributed K-median Clustering Algorithms on Large-Scale Image Data

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Abstract

Most commonly used clustering algorithms are those aimed at solving the well-known k-median problem. Their main advantage is that they are simple to implement and use, and they are flexible in choosing dissimilarity measures (not necessarily metrics). K-median algorithms are also known to be more robust to noise and outliers in comparison with k-means algorithms. In spite of that, they have been of limited use for large-scale clustering problems due to their high computational and space complexity. This work aims at computational comparison of k-median clustering algorithms in a specific large-scale setting—clustering large image collections. We implement distributed versions of the most common k-median clustering algorithms and compare them with our parallel heuristic for solving large-scale k-median problem instances. We analyze clustering results with respect to external evaluation measures and run time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Irkutsk supercomputer center of SB RAS. http://hpc.icc.ru. Accessed 15 Feb 2019

  2. An, H.-C., Svensson, O.: Recent developments in approximation algorithms for facility location and clustering problems. In: Fukunaga, T., Kawarabayashi, K. (eds.) Combinatorial Optimization and Graph Algorithms, pp. 1–19. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6147-9_1

    Chapter  MATH  Google Scholar 

  3. Arbelaez, A., Quesada, L.: Parallelising the k-medoids clustering problem using space-partitioning. In: Helmert, M., Röger, G. (eds.) Proceedings the 6th Annual Symposium on Combinatorial Search, SoCS 2013, pp. 20–28. AAAI (2013)

    Google Scholar 

  4. Avella, P., Boccia, M., Salerno, S., Vasilyev, I.: An aggregation heuristic for large scale p-median problem. Comput. Oper. Res. 39(7), 1625–1632 (2012)

    Article  MathSciNet  Google Scholar 

  5. Avella, P., Boccia, M., Sforza, A., Vasilyev, I.: An effective heuristic for large-scale capacitated facility location problems. J. Heuristics 15(6), 597–615 (2008)

    Article  Google Scholar 

  6. Avella, P., Sassano, A., Vasilyev, I.: Computational study of large-scale p-median problems. Math. Program. 109(1), 89–114 (2007)

    Article  MathSciNet  Google Scholar 

  7. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k-median and positive correlation in budgeted optimization. ACM Trans. Algorithms 13(2), 23:1–23:31 (2017). https://doi.org/10.1145/2981561

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: Proceedings 13th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2018, pp. 67–74. IEEE (2018). https://doi.org/10.1109/FG.2018.00020

  9. Carrizosa, E., Ushakov, A., Vasilyev, I.: A computational study of a nonlinear minsum facility location problem. Comput. Oper. Res. 39(11), 2625–2633 (2012)

    Article  MathSciNet  Google Scholar 

  10. Crainic, T.G., Gendreau, M., Hansen, P., Mladenović, N.: Cooperative parallel variable neighborhood search for the p-median. J. Heuristics 10(3), 293–314 (2004)

    Article  Google Scholar 

  11. Daskin, M.S., Maass, K.L.: The p-median problem. In: Laporte, G., Nickel, S., da Gama, F.S. (eds.) Location Science, pp. 21–45. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13111-5_2

    Chapter  Google Scholar 

  12. Fisher, M.L.: The lagrangian relaxation method for solving integer programming problems. Manage. Sci. 27(1), 1–18 (1981)

    Article  MathSciNet  Google Scholar 

  13. Frahm, J.-M., et al.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_27

    Chapter  Google Scholar 

  14. García, S., Labbé, M., Marín, A.: Solving large p-median problems with a radius formulation. INFORMS J. Comput. 23(4), 546–556 (2011)

    Article  MathSciNet  Google Scholar 

  15. Garcia-López, F., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: The parallel variable neighborhood search for the p-median problem. J. Heuristics 8(3), 375–388 (2002)

    Article  Google Scholar 

  16. Garcia-López, F., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: Parallelization of the scatter search for the p-median problem. Parallel Comput. 29(5), 575–589 (2003). Parallel computing in logistics

    Article  Google Scholar 

  17. Hanafi, S., Sterle, C., Ushakov, A., Vasilyev, I.: A parallel subgradient algorithm for lagrangean dual function of the \(p\)-median problem. Studia Informatica Universalis 9(3), 105–124 (2011)

    Google Scholar 

  18. Hansen, P., Brimberg, J., Urosević, D., Mladenović, N.: Solving large p-median clustering problems by primal-dual variable neighborhood search. Data Min. Knowl. Discov. 19(3), 351–375 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. II: The p-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

    Article  MathSciNet  Google Scholar 

  20. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical Data Analysis Based on the \(L_1\)-Norm and Related Methods, pp. 405–416. North-Holland (1987)

    Google Scholar 

  21. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J. Comput. 45(2), 530–547 (2016). https://doi.org/10.1137/130938645

    Article  MathSciNet  MATH  Google Scholar 

  22. Mancini, E.P., Marcarelli, S., Vasilyev, I., Villano, U.: A grid-aware MIP solver: implementation and case studies. Futur. Gener. Comp. Syst. 24(2), 133–141 (2008)

    Article  Google Scholar 

  23. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13(1), 182–196 (1984)

    Article  MathSciNet  Google Scholar 

  24. Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.: The p-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)

    Article  MathSciNet  Google Scholar 

  25. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Xie, X., Jones, M.W., Tam, G.K.L. (eds.) Proceedings the British Machine Vision Conference (BMVC), pp. 41.1–41.12. BMVA Press (2015). https://doi.org/10.5244/C.29.41

  26. Song, H., Lee, J.G., Han, W.S.: PAMAE: parallel k-medoids clustering with high accuracy and efficiency. In: Proceedings 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 1087–1096. ACM, New York (2017). https://doi.org/10.1145/3097983.3098098

  27. Vasilyev, I., Ushakov, A.: A shared memory parallel heuristic algorithm for the large-scale p-median problem. In: Sforza, A., Sterle, C. (eds.) Optimization and Decision Science: Methodologies and Applications, ODS 2017. Mathematics & Statistics, vol. 217, pp. 295–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67308-0_30

    Chapter  Google Scholar 

  28. Vasilyev, I., Ushakov, A.V., Maltugueva, N., Sforza, A.: An effective heuristic for large-scale fault-tolerant k-median problem. Soft Comput. (2018). https://doi.org/10.1007/s00500-018-3562-6

    Article  Google Scholar 

  29. Whitaker, R.A.: A fast algorithm for the greedy interchange for large-scale clustering and median location problems. Can. J. Oper. Res. Inf. Process. 21, 95–108 (1983)

    MATH  Google Scholar 

  30. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016). https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Russian Science Foundation under grant 17-71-10176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton V. Ushakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ushakov, A.V., Vasilyev, I. (2019). A Computational Comparison of Parallel and Distributed K-median Clustering Algorithms on Large-Scale Image Data. In: Bykadorov, I., Strusevich, V., Tchemisova, T. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Communications in Computer and Information Science, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-030-33394-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33394-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33393-5

  • Online ISBN: 978-3-030-33394-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics