Abstract
Obtaining large amounts of annotated biomedical data to train convolutional neural networks (CNNs) for image segmentation is expensive. We propose a method that requires only a few segmentation examples to accurately train a semi-automated segmentation algorithm. Our algorithm, a convolutional neural network method for boundary optimization (CoMBO), can be used to rapidly outline object boundaries using orders of magnitude less annotation than full segmentation masks, i.e., only a few pixels per image. We found that CoMBO is significantly more accurate than state-of-the-art machine learning methods such as Mask R-CNN. We also show how we can use CoMBO predictions, when CoMBO is trained on just 3 images, to rapidly create large amounts of accurate training data for Mask R-CNN. Our few-shot method is demonstrated on ISBI cell tracking challenge datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdulla, W.: Mask R-CNN for object detection and instance segmentation on keras and tensorflow (2017). https://github.com/matterport/Mask_RCNN
Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: CVPR 2017. IEEE (2017)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Maška, M., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30(11), 1609–1617 (2014)
Michaelis, C., Bethge, M., Ecker, A.: One-shot segmentation in clutter. In: International Conference on Machine Learning, pp. 3546–3555 (2018)
Milan, A., et al.: Semantic segmentation from limited training data. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1908–1915. IEEE (2018)
Reinke, A.: How to exploit weaknesses in biomedical challenge design and organization. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 388–395. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_45
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rutter, E.M., Lagergren, J.H., Flores, K.B.: Automated object tracing for biomedical image segmentation using a deep convolutional neural network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 686–694. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_78
Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410 (2017)
Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141 (2017). https://doi.org/10.1038/nmeth.4473
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rutter, E.M., Lagergren, J.H., Flores, K.B. (2019). A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation. In: Wang, Q., et al. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data. DART MIL3ID 2019 2019. Lecture Notes in Computer Science(), vol 11795. Springer, Cham. https://doi.org/10.1007/978-3-030-33391-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-33391-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33390-4
Online ISBN: 978-3-030-33391-1
eBook Packages: Computer ScienceComputer Science (R0)