Skip to main content

A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data (DART 2019, MIL3ID 2019)

Abstract

Obtaining large amounts of annotated biomedical data to train convolutional neural networks (CNNs) for image segmentation is expensive. We propose a method that requires only a few segmentation examples to accurately train a semi-automated segmentation algorithm. Our algorithm, a convolutional neural network method for boundary optimization (CoMBO), can be used to rapidly outline object boundaries using orders of magnitude less annotation than full segmentation masks, i.e., only a few pixels per image. We found that CoMBO is significantly more accurate than state-of-the-art machine learning methods such as Mask R-CNN. We also show how we can use CoMBO predictions, when CoMBO is trained on just 3 images, to rapidly create large amounts of accurate training data for Mask R-CNN. Our few-shot method is demonstrated on ISBI cell tracking challenge datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulla, W.: Mask R-CNN for object detection and instance segmentation on keras and tensorflow (2017). https://github.com/matterport/Mask_RCNN

  2. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: CVPR 2017. IEEE (2017)

    Google Scholar 

  3. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  4. Maška, M., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30(11), 1609–1617 (2014)

    Article  Google Scholar 

  5. Michaelis, C., Bethge, M., Ecker, A.: One-shot segmentation in clutter. In: International Conference on Machine Learning, pp. 3546–3555 (2018)

    Google Scholar 

  6. Milan, A., et al.: Semantic segmentation from limited training data. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1908–1915. IEEE (2018)

    Google Scholar 

  7. Reinke, A.: How to exploit weaknesses in biomedical challenge design and organization. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 388–395. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_45

    Chapter  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Rutter, E.M., Lagergren, J.H., Flores, K.B.: Automated object tracing for biomedical image segmentation using a deep convolutional neural network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 686–694. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_78

    Chapter  Google Scholar 

  10. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410 (2017)

  11. Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141 (2017). https://doi.org/10.1038/nmeth.4473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica M. Rutter .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 194 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rutter, E.M., Lagergren, J.H., Flores, K.B. (2019). A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation. In: Wang, Q., et al. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data. DART MIL3ID 2019 2019. Lecture Notes in Computer Science(), vol 11795. Springer, Cham. https://doi.org/10.1007/978-3-030-33391-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33391-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33390-4

  • Online ISBN: 978-3-030-33391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics