Skip to main content

Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11795)

Abstract

We cast the problem of image denoising as a domain translation problem between high and low noise domains. By modifying the cycleGAN model, we are able to learn a mapping between these domains on unpaired retinal optical coherence tomography images. In quantitative measurements and a qualitative evaluation by ophthalmologists, we show how this approach outperforms other established methods. The results indicate that the network differentiates subtle changes in the level of noise in the image. Further investigation of the model’s feature maps reveals that it has learned to distinguish retinal layers and other distinct regions of the images.

Keywords

  • Optical coherence tomography
  • Generative Adversarial Networks
  • Image denoising

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-33391-1_1
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-33391-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Chang, S.G., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    MathSciNet  CrossRef  Google Scholar 

  2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3D filtering, vol. 6064 (2006)

    Google Scholar 

  3. Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J.: Fast nonlocal filtering applied to electron cryomicroscopy. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1331–1334 (2008)

    Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  5. Halupka, K.J., et al.: Retinal optical coherence tomography image enhancement via deep learning. Biomed. Opt. Express 9(12), 6205–6221 (2018)

    CrossRef  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  7. Huang, Y., et al.: Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network. Opt. Express 27(9), 12289–12307 (2019)

    CrossRef  Google Scholar 

  8. Joseph, M., Schmitt, S.H., Xiang, K.M.Y.: Speckle in optical coherence tomography. J. Biomed. Opt. 4(1), 95–105 (1999)

    CrossRef  Google Scholar 

  9. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 163–169 (1987)

    Google Scholar 

  10. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016). http://distill.pub/2016/deconv-checkerboard

    CrossRef  Google Scholar 

  11. Podoleanu, A.G.: Optical coherence tomography. J. Microsc. 247(3), 209–219 (2012)

    CrossRef  Google Scholar 

  12. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    CrossRef  Google Scholar 

  13. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  14. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilja Manakov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13394 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Manakov, I., Rohm, M., Kern, C., Schworm, B., Kortuem, K., Tresp, V. (2019). Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation. In: , et al. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data. DART MIL3ID 2019 2019. Lecture Notes in Computer Science(), vol 11795. Springer, Cham. https://doi.org/10.1007/978-3-030-33391-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33391-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33390-4

  • Online ISBN: 978-3-030-33391-1

  • eBook Packages: Computer ScienceComputer Science (R0)