Skip to main content

Adaptive Kinematic Control of Redundant Manipulators

  • Chapter
  • First Online:
Deep Reinforcement Learning with Guaranteed Performance

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 265))

Abstract

Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program approaches, which are capable of optimizing performance indices subject to physical constraints, are widely used. However, the existing quadratic program approaches require exactly knowing all the physical parameters of manipulators, the condition of which may not hold in some practical applications. This fact motivates us to consider the application of adaptive control techniques for simultaneous parameter identification and neural control. However, the inherent nonlinearity and non-smoothness of the neural model prohibits direct applications of adaptive control to this model and there has been no existing result on adaptive control of robotic arms using projection neural network (PNN) approaches with parameter convergence. Different from conventional treatments in joint angle space, we investigate the problem from the joint speed space and decouple the nonlinear part of the Jacobian matrix from the structural parameters that need to be learnt. Based on the new representation, we establish the first adaptive PNN with online learning for the redundancy resolution of manipulators with unknown physical parameters, which tackles the dilemmas in existing methods. The presented method is capable of simultaneously optimizing performance indices subject to physical constraints and handling parameter uncertainty. Theoretical results are presented to guarantee the performance of the presented neural network. Besides, simulations based on a PUMA 560 manipulator with unknown physical parameters together with the comparison with an existing PNN substantiate the efficacy and superiority of the presented neural network, and verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Z., Beck, A., Magnenat-Thalmann, N.: Human-like behavior generation based on head-arms model for robot tracking external targets and body parts. IEEE Trans. Cybern. 45(8), 1390–1400 (2015)

    Article  Google Scholar 

  2. Jin, L., Zhang, Y.: G2-Type SRMPC scheme for synchronous manipulation of two redundant robot arms. IEEE Trans. Cybern. 45(2), 153–164 (2015)

    Article  MathSciNet  Google Scholar 

  3. Guo, D., Zhang, Y.: A new inequality-based obstacle-avoidance MVN scheme and its application to redundant robot manipulators. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 42(6), 1326–1340 (2012)

    Article  Google Scholar 

  4. Xu, W., Zhang, J., Liang, B., Li, B.: Singularity analysis and avoidance for robot manipulators with nonspherical wrists. IEEE Trans. Ind. Electron. 63(1), 277–290 (2016)

    Article  Google Scholar 

  5. Zhang, Y., Wang, J., Xia, Y.: A Dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits. IEEE Trans. Neural Netw. 14(3), 658–667 (2003)

    Article  Google Scholar 

  6. Zhang, Y., Wang, J., Xu, Y.: A dual neural network for bi-criteria kinematic control of redundant manipulators. IEEE Trans. Robot. Autom. 18(6), 923–931 (2002)

    Article  Google Scholar 

  7. Liao, B., Liu, W.: Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators. Robotica 33(10), 2100–2113 (2015)

    Article  Google Scholar 

  8. Ding, H., Tso, S.K.: Redundancy resolution of robotic manipulators with neural computation. IEEE Trans. Ind. Electron. 46(1), 230–233 (1999)

    Article  Google Scholar 

  9. Klein, C.A., Huang, C.H.: Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans. Syst., Man, Cybern. (2), 245–250 (1983)

    Article  Google Scholar 

  10. Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., Fraisse, P.: Collaborative manufacturing with physical human-robot interaction. Robot. Cim-Int. Manuf. 31, 1–13 (2016)

    Article  Google Scholar 

  11. Xiao, L., Zhang, Y.: Acceleration-level repetitive motion planning and its experimental verification on a six-link planar robot manipulator. IEEE Trans. Control Syst. Techno. 21(3), 906–914 (2013)

    Article  Google Scholar 

  12. Jin, L., Li, S., La, H.M., Luo, X.: Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64(6), 4710–4720 (2017)

    Article  Google Scholar 

  13. Cheng, F.-T., Sheu, R.-J., Chen, T.-H.: The improved compact QP method for resolving manipulator redundancy. IEEE Trans. Syst., Man, Cybern. 25, 1521–1530 (1995)

    Article  Google Scholar 

  14. Zhang, Z., Li, Z., Zhang, Y., Luo, Y., Li, Y.: Neural-dynamic-method-based dual-arm CMG scheme with time-varying constraints applied to humanoid robots. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3251–3262 (2015)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Y., Ge, S.S., Lee, T.H.: A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans. Syst., Man, Cybern. B, Cybern. 34(5), 2126–2132 (2004)

    Article  Google Scholar 

  16. Hou, Z.-G., Cheng, L., Tan, M.: Multicriteria optimization for coordination of redundant robots using a dual neural network. IEEE Trans. Syst., Man, Cybern. B, Cybern. 40(4), 1075–1087 (2010)

    Article  Google Scholar 

  17. Chen, D., Zhang, Y.: A hybrid multi-objective scheme applied to redundant robot manipulators. IEEE Trans. Autom. Sci. Eng. 14(3), 1337–1350 (2017)

    Article  Google Scholar 

  18. Jin, L., Li, S., Hu, B., Liu, M.: A survey on projection neural networks and their applications. Appl. Soft Comput. 76, 533–544 (2019)

    Article  Google Scholar 

  19. Xiao, L., Li, K., Tan, Z., Zhang, Z., Liao, B., Chen, K., Jin, L., Li, S.: Nonlinear gradient neural network for solving system of linear equations. Inf. Process. Lett. 142, 35–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiang, Q., Liao, B., Xiao, L., Lin, L., Li, S.: Discrete-time noise-tolerant Zhang neural network for dynamic matrix pseudoinversion. Soft Comput. 23(3), 755–766 (2019)

    Article  MATH  Google Scholar 

  21. Xiao, L., Li, S., Yang, J., Zhang, Z.: A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization. Neurocomputing 285, 125–132 (2018)

    Article  Google Scholar 

  22. Xiao, L., Liao, B., Li, S., Chen, K.: Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Netw. 98, 102–113 (2018)

    Article  Google Scholar 

  23. Xiao, L., Zhang, Z., Zhang, Z., Li, W., Li, S.: Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation. Neural Netw. 105, 185–196 (2018)

    Article  Google Scholar 

  24. Zhang, Z., Lu, Y., Zheng, L., Li, S., Yu, Z., Li, Y.: A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality. IEEE Trans. Autom. Control 63(12), 4110–4125 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, L., Li, S.: Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. Neurocomputing 267, 107–113 (2017)

    Article  Google Scholar 

  26. Jin, L., Li, S., Liao, B., Zhang, Z.: Zeroing neural networks: a survey. Neurocomputing 267, 597–604 (2017)

    Article  Google Scholar 

  27. Mao, M., Li, J., Jin, L., Li, S., Zhang, Y.: Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 207, 220–230 (2016)

    Article  Google Scholar 

  28. Jin, L., Zhang, Y., Li, S.: Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2615–2627 (2016)

    Article  Google Scholar 

  29. Li, S., Li, Y.: Nonlinearly activated neural network for solving time-varying complex sylvester equation. IEEE Trans. Cybern. 44(8), 1397–1407 (2014)

    Article  Google Scholar 

  30. Li, S., Li, Y., Wang, Z.: A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw. 39, 27–39 (2013)

    Article  MATH  Google Scholar 

  31. Li, M., Li, Y., Ge, S.S., Lee, T.H.: Adaptive control of robotic manipulators with unified motion constraints. IEEE Trans. Syst., Man, Cybern. Syst. 47(1), 184–194 (2017)

    Article  Google Scholar 

  32. Wang, H.: Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 62(2), 948–954 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Aghili, F.: Adaptive control of manipulators forming closed kinematic chain with inaccurate kinematic model. IEEE/ASME Trans. Mechatron. 18(5), 1544–1554 (2013)

    Article  Google Scholar 

  34. Cheah, C.C., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans. Robot. Autom. 19(4), 192–702 (2003)

    Google Scholar 

  35. Shimizu, M., Kakuya, H., Yoon, W.-K., Kitagaki, K., Kosuge, K.: Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Trans. Robot. 24(5), 1131–1141 (2008)

    Article  Google Scholar 

  36. Patchaikani, P.K., Behera, L., Prasad, G.: A single network adaptive critic-based redundancy resolution scheme for robot manipulators. IEEE Trans. Ind. Electron. 59(8), 3241–3253 (2012)

    Article  Google Scholar 

  37. Wang, H., Shi, P., Li, H., Zhou, Q.: Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Trans. Cybern. 47(10), 3075–3087 (2017)

    Article  Google Scholar 

  38. Na, J., Chen, Q., Ren, X., Guo, Y.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 61(1), 486–494 (2014)

    Article  Google Scholar 

  39. Li, Z., Huang, Z., He, W., Su, C.-Y.: Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64(2), 1664–1674 (2017)

    Article  Google Scholar 

  40. Jaramillo-Lopez, F., Kenne, G., Lamnabhi-Lagarrigue, F.: Adaptive control for a class of uncertain nonlinear systems: application to photovoltaic control systems. IEEE Trans. Autom. Control 62(1), 393–398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  42. Fang, J., Zhao, J., Mei, T., Chen, J.: Online optimization scheme with dual-mode controller for redundancy-resolution with torque constraints. Robot. Cim-Int. Manuf. 40, 44–54 (2016)

    Article  Google Scholar 

  43. Zhang, Y., Li, S., Gui, J., Luo, X.: Velocity-level control with compliance to acceleration-level constraints: a novel scheme for manipulator redundancy resolution. IEEE Trans. Ind. Inform. 14(3), 921–930 (2018)

    Article  Google Scholar 

  44. Li, S., Zhang, Y., Jin, L.: Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neurl Netw. Learn. Syst. 28(10), 2243–2254 (2017)

    Article  MathSciNet  Google Scholar 

  45. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, England (2004)

    Book  MATH  Google Scholar 

  46. Xia, Y., Feng, G.: On convergence rate of projection neural networks. IEEE Trans. Autom. Control 49(1), 91–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. OptiTrack Motion Capture Systems (2017). Available: http://optitrack.com/ [Online]

  48. Salehian, S.S.M., Khoramshahi, M., Billard, A.: A dynamical system approach for softly catching a flying object: theory and experiment. IEEE Trans. Robot. 32(2), 462–471 (2016)

    Article  Google Scholar 

  49. Davis, E., Pounds, P.E.I.: Direct sensing of thrust and velocity for a quadrotor rotor array. IEEE Robot. Autom. Lett. 2(3), 1360–1366 (2017)

    Article  Google Scholar 

  50. Wang, A., Mu, B., Shi, Y.: Consensus control for a multi-agent system with integral-type event-triggering condition and asynchronous periodic detection. IEEE Trans. Ind. Electron. 64(7), 5629–5639 (2017)

    Article  Google Scholar 

  51. Bartelds, T., Capra, A., Hamaza, S., Stramigioli, S., Fumagalli, M.: Compliant aerial manipulators: toward a new generation of aerial robotic workers. IEEE Robot. Autom. Lett 1(1), 477–483 (2016)

    Article  Google Scholar 

  52. Ajoudani, A., Tsagarakis, N.G., Bicchim, A.: Tele-impedance: towards transferring human impedance regulation skills to robots. In: Proceedings of IEEE International Conference Robotics Automation, pp. 382–388 (2012)

    Google Scholar 

  53. Papini, G.P.R., Fontana, M., Bergamasco, M.: Desktop haptic interface for simulation of hand-tremor. IEEE Trans. Haptics 9(1), 33–42 (2016)

    Article  Google Scholar 

  54. Du, G., Zhang, P.: Online serial manipulator calibration based on multisensory process via extended kalman and particle filters. IEEE Trans. Ind. Electron. 61(12), 6852–6859 (2014)

    Article  Google Scholar 

  55. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  56. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Dixon, W.E.: Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 52(3), 488–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans. Autom. Control 51(6), 1024–1029 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, H., Xie, Y.: Passivity based adaptive Jacobian tracking for free-floating space manipulators without using spacecraft acceleration. Automatica 45, 1510–1517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Bellman, R.: Introduction to Matrix Analysis. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    MATH  Google Scholar 

  61. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, New Jersey (2002)

    MATH  Google Scholar 

  62. Gao, X.: Exponential stability of globally projected dynamic systems. IEEE Trans. Neural Netw. 14(2), 426–431 (2003)

    Article  Google Scholar 

  63. Adetola, V., Guay, M.: Finite-time parameter estimation in adaptive control of nonlinear systems. IEEE Trans. Autom. Control 53(3), 807–811 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mishkov, R., Darmonsk, S.: Nonlinear adaptive control system design with asymptotically stable parameter estimation error. Int. J. Control 91(1), 181–203 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Bai, E.W., Sastry, S.S.: Persistency of excitation, sufficient richness and parameter convergence in discrete time adaptive control. Syst. Control Lett. 6, 153–163 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  66. Dixon, W.E., Dawson, D.M., Zhang, F., Zergeroglu, E.: Global exponential tracking control of a mobile robot system via a PE condition. IEEE Trans. Syst., Man, Cybern. B, Cybern. 30(1), 129–142 (2000)

    Article  Google Scholar 

  67. Modares, H., Lewis, F.L., Naghibi-Sistani, M.B.: Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems. Automatica 50(1), 193–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li .

Appendix

Appendix

According to the D-H convention [41], based on Table 6.1, the forward kinematics of the PUMA 560 manipulator is described as (6.1), where \(\mathbf {r}=[r_\text {x},r_\text {y},r_\text {z}]^\text {T}\), and \(f(\theta )=[f_1(\theta ),f_2(\theta ),f_3(\theta )]^\text {T}\) with

$$\begin{aligned} \begin{aligned} f_1(\theta )&=(-((\cos \theta _1\cos ^2\theta _2-\cos \theta _1\sin \theta _2\sin \theta _3)\cos \theta _4-\sin \theta _1\sin \theta _4)\sin \theta _5\\&~~-(\cos \theta _1\cos \theta _2\sin \theta _3{+}\cos \theta _1\sin \theta _2 \cos \theta _3)\cos \theta _5)d_6{+}a_2\cos \theta _1\cos \theta _2\cos \theta _3\\&~~-a_2\cos \theta _1\sin \theta _2 \sin \theta _3+d_3\sin \theta _1+a_3\cos \theta _1\cos \theta _2,\\ f_2(\theta )&= (-((\sin \theta _1\cos ^2\theta _2-\sin \theta _1\sin \theta _2\sin \theta _3)\cos \theta _4 +\cos \theta _1\sin \theta _4)\sin \theta _5\\&~~-(\sin \theta _1\cos \theta _2\sin \theta _3+\sin \theta _1\sin \theta _2\cos \theta _3)\cos \theta _5)d_6+a_2\sin \theta _1\cos \theta _2\cos \theta _3\\&~~-a_2\sin \theta _1\sin \theta _2\sin \theta _3-d_3\cos \theta _1+a_3\sin \theta _1\cos \theta _2,\\ f_3(\theta )&=d_1+(-(\sin \theta _2\cos \theta _2+\cos \theta _2\sin \theta _3)\cos \theta _4\sin \theta _5 +(-\sin \theta _2\sin \theta _3\\&~~+\cos \theta _2\cos \theta _3)\cos \theta _5)d_6+a_2\sin \theta _2\cos \theta _3+a_2\cos \theta _2\sin \theta _3+a_3\sin \theta _2. \end{aligned} \end{aligned}$$

Then, the Jacobian matrix \(J(\theta )=\partial f(\theta )/\partial \theta \) is derived, which is described as (6.2) with the nonzero elements of \(W\in \mathbb {R}^{3\times 11}\) being \(w_{11}=d_6\), \(w_{12}=a_2\), \(w_{13}=d_3\), \(w_{14}=a_3\), \(w_{25}=d_6\), \(w_{26}=a_2\), \(w_{27}=d_3\), \(w_{28}=a_3\), \(w_{39}=d_6\), \(w_{3,10}=a_2\), and \(w_{3,11}=a_3\). The nonzero elements of the corresponding \(\phi (\theta )\in \mathbb {R}^{11\times 6}\) are

$$\begin{aligned} \begin{aligned} \phi _{11}(\theta )&=\sin \theta _5(\cos \theta _1\sin \theta _4 + cos^2\theta _2\cos \theta _4\sin \theta _1 - \cos \theta _4\sin \theta _1\sin \theta _2\sin \theta _3) \\&~~+ \sin (\theta _2+ \theta _3)\cos \theta _5\sin \theta _1,\\ \phi _{12}(\theta )&=\cos \theta _1\cos \theta _2\cos \theta _4\sin \theta _5(2\sin \theta _2 + \sin \theta _3)-\cos (\theta _2+\theta _3)\cos \theta _1\cos \theta _5,\\ \phi _{13}(\theta )&=\cos \theta _5(\cos \theta _1\sin \theta _2\sin \theta _3 - \cos \theta _1\cos \theta _2\cos \theta _3)+ \cos \theta _1\cos \theta _3\\&~~\cdot \cos \theta _4\sin \theta _2\sin \theta _5,\\ \phi _{14}(\theta )&=\sin \theta _5(\sin \theta _4(\cos \theta _1\cos ^2\theta _2 - \cos \theta _1\sin \theta _2\sin \theta _3)+ \cos \theta _4\sin \theta _1),\\ \phi _{15}(\theta )&=\sin \theta _5(\cos \theta _1\cos \theta _2\sin \theta _3 + \cos \theta _1\cos \theta _3\sin \theta _2)- \cos \theta _5(\cos \theta _4\\&~~\cdot (\cos \theta _1\cos ^2\theta _2 - \cos \theta _1\sin \theta _2\sin \theta _3)\sin \theta _1\sin \theta _4),\\ \phi _{21}(\theta )&=-\cos (\theta _2 + \theta _3)\sin \theta _1,\\ \phi _{22}(\theta )&=\phi _{23}(\theta )=-\sin (\theta _2 + \theta _3)\cos \theta _1,\\ \phi _{31}(\theta )&=\cos \theta _1,\\ \phi _{41}(\theta )&=-\sin \theta _1\cos \theta _2,\\ \phi _{42}(\theta )&=-\cos \theta _1\sin \theta _2,\\ \phi _{51}(\theta )&=\sin \theta _5(\sin \theta _1\sin \theta _4 - \cos \theta _1\cos ^2\theta _2\cos \theta _4 + \cos \theta _1\cos \theta _4\sin \theta _2\sin \theta _3) \\&~~- \sin (\theta _2 + \theta _3)\cos \theta _1\cos \theta _5,\\ \phi _{52}(\theta )&=\cos \theta _2\cos \theta _4\sin \theta _1\sin \theta _5(2\sin \theta _2 + \sin \theta _3) - \cos (\theta _2+ \theta _3)\cos \theta _5\sin \theta _1,\\ \phi _{53}(\theta )&=\cos \theta _5(\sin \theta _1\sin \theta _2\sin \theta _3 - \cos \theta _2\cos \theta _3\sin \theta _1)+ \cos \theta _3\cos \theta _4\sin \theta _1\\&~~\cdot \sin \theta _2\sin \theta _5,\\ \phi _{54}(\theta )&=-\sin \theta _5(\cos \theta _1\cos \theta _4 -\sin \theta _4(\cos ^2\theta _2\sin \theta _1 - \sin \theta _1\sin \theta _2\sin \theta _3)),\\ \phi _{55}(\theta )&=\sin (\theta _2 + \theta _3)\sin \theta _1\sin \theta _5 - \cos \theta _5(\cos \theta _1\sin \theta _4+ \cos ^2\theta _2\cos \theta _4\sin \theta _1 \\&~~- \cos \theta _4\sin \theta _1\sin \theta _2\sin \theta _3),\\ \phi _{61}(\theta )&=\cos (\theta _2 + \theta _3)\cos \theta _1,\\ \phi _{62}(\theta )&=\phi _{63}(\theta )=-\sin (\theta _2 + \theta _3)\sin \theta _1,\\ \phi _{71}(\theta )&=\sin \theta _1,\\ \phi _{81}(\theta )&=\cos \theta _1\cos \theta _2,\\ \phi _{82}(\theta )&=-\sin \theta _1\sin \theta _2,\\ \phi _{92}(\theta )&=\cos \theta _4\sin \theta _5(\sin \theta _2\sin \theta _3 + 2\sin ^2\theta _2 - 1) - \sin (\theta _2+ \theta _3)\cos \theta _5,\\ \phi _{93}(\theta )&=- \sin (\theta _2 + \theta _3)\cos \theta _5 - \cos \theta _2\cos \theta _3\cos \theta _4\sin \theta _5,\\ \phi _{94}(\theta )&=\cos \theta _2\sin \theta _4\sin \theta _5(\sin \theta _2 + \sin \theta _3),\\ \phi _{95}(\theta )&=- \cos (\theta _2 + \theta _3)\sin \theta _5 - \cos \theta _2\cos \theta _4\cos \theta _5(\sin \theta _2+ \sin \theta _3),\\ \phi _{10,2}(\theta )&=\phi _{10,3}(\theta )=\cos (\theta _2 + \theta _3),\\ \phi _{11,2}(\theta )&=\cos \theta _2. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Li, S., Zhou, X. (2020). Adaptive Kinematic Control of Redundant Manipulators. In: Deep Reinforcement Learning with Guaranteed Performance. Studies in Systems, Decision and Control, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-030-33384-3_6

Download citation

Publish with us

Policies and ethics