Skip to main content

The Effect of Exercise on the Hypothalamic-Pituitary-Adrenal Axis

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

There is growing evidence linking physical activity with stress and depression. The hypothalamic-pituitary-adrenal (HPA) axis is a major modulator of such anxiogenic and depressive behaviors. The aim of the present chapter is to review the current state of knowledge on how different types of physical activities performed by distinct groups of individuals, at determined intensities and volumes, influence the activation of the HPA axis. Animal and human studies will respectively be used to clarify the mechanistic and clinical aspects through which exercise influences the HPA axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watts AG. Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: a complexity beyond negative feedback. Front Neuroendocrinol. 2005;26:109–30. https://doi.org/10.1016/j.yfrne.2005.09.001.

    Article  CAS  PubMed  Google Scholar 

  2. Brown MR, Fisher LA. In: Nemeroff CB, De Souza EB, editors. Corticotropin-releasing factor: basic and clinical studies of a neuropeptide. CRC. Taylor & Francis group 1990. p. 291–8.

    Google Scholar 

  3. Heinrichs SC, Tache Y. Therapeutic potential of CRF receptor antagonists: a gut-brain perspective. Expert Opin Investig Drugs. 2001;10:647–59. https://doi.org/10.1517/13543784.10.4.647.

    Article  CAS  PubMed  Google Scholar 

  4. Muller MB, Wurst W. Getting closer to affective disorders: the role of CRH receptor systems. Trends Mol Med. 2004;10:409–15. https://doi.org/10.1016/j.molmed.2004.06.007.

    Article  CAS  PubMed  Google Scholar 

  5. Linton EA, Behan DP, Saphier PW, Lowry PJ. Corticotropin-releasing hormone (CRH)-binding protein: reduction in the adrenocorticotropin-releasing activity of placental but not hypothalamic CRH. J Clin Endocrinol Metab. 1990;70:1574–80.

    Article  CAS  PubMed  Google Scholar 

  6. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213:1394–7.

    Article  CAS  PubMed  Google Scholar 

  7. Vaughan J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 1995;378:287–92. https://doi.org/10.1038/378287a0.

    Article  CAS  PubMed  Google Scholar 

  8. Reyes TM, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A. 2001;98:2843–8. https://doi.org/10.1073/pnas.051626398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7:605–11. https://doi.org/10.1038/87936.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis K, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A. 2001;98:7570–5. https://doi.org/10.1073/pnas.121165198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turnbull AV, Rivier C. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med. 1997;215:1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Koob GF, Cole BJ, Swerdlow NR, Le Moal M, Britton KTS. performance, and arousal: focus on CRF. NIDA Res Monogr. 1990;97:163–76.

    CAS  PubMed  Google Scholar 

  13. Krysiak R, Obuchowicz E, Herman ZS. Role of corticotropin-releasing factor (CRF) in anxiety. Pol J Pharmacol. 2000;52:15–25.

    CAS  PubMed  Google Scholar 

  14. Fisher LA, et al. Corticotropin-releasing factor (CRF): central effects on mean arterial pressure and heart rate in rats. Endocrinology. 1982;110:2222–4.

    Article  CAS  PubMed  Google Scholar 

  15. Taché Y, Gunion MM, Stephens R. In: Nemeroff CB, De Souza EB, editors. Corticotropin-releasing factor: basic and clinical studies of a neuropeptide. CRC. Taylor & Francis group 1990. p. 299–307.

    Google Scholar 

  16. Brownstein MJ, Russell JT, Gainer H. Synthesis, transport, and release of posterior pituitary hormones. Science. 1980;207:373–8.

    Article  CAS  PubMed  Google Scholar 

  17. Nishimura H, Fan Z. Regulation of water movement across vertebrate renal tubules. Comp Biochem Physiol A Mol Integr Physiol. 2003;136:479–98.

    Article  PubMed  CAS  Google Scholar 

  18. Dogterom J, Snijdewint FG, Buijs RM. The distribution of vasopressin and oxytocin in the rat brain. Neurosci Lett. 1978;9:341–6.

    Article  CAS  PubMed  Google Scholar 

  19. Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res. 1978;192:423–35.

    Article  CAS  PubMed  Google Scholar 

  20. DeVries GJ, Buijs RM, Van Leeuwen FW, Caffe AR, Swaab DF. The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol. 1985;233:236–54. https://doi.org/10.1002/cne.902330206.

    Article  CAS  PubMed  Google Scholar 

  21. Michell RH, Kirk CJ, Billah MM. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979;7:861–5.

    Article  CAS  PubMed  Google Scholar 

  22. Jard S, Lombard C, Marie J, Devilliers G. Vasopressin receptors from cultured mesangial cells resemble V1a type. Am J Phys. 1987;253:F41–9.

    CAS  Google Scholar 

  23. Antoni FA, Holmes MC, Makara GB, Karteszi M, Laszlo FA. Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides. 1984;5:519–22.

    Article  CAS  PubMed  Google Scholar 

  24. Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res. 2001;51:372–90.

    Article  CAS  PubMed  Google Scholar 

  25. Bicknell AB. The tissue-specific processing of pro-opiomelanocortin. J Neuroendocrinol. 2008;20:692–9. https://doi.org/10.1111/j.1365-2826.2008.01709.x.

    Article  CAS  PubMed  Google Scholar 

  26. Oliver RL, Davis JR, White A. Characterisation of ACTH related peptides in ectopic Cushing’s syndrome. Pituitary. 2003;6:119–26.

    Article  CAS  PubMed  Google Scholar 

  27. Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol. 2003;149:79–90.

    Article  CAS  PubMed  Google Scholar 

  28. Papadimitriou A, Priftis KN. Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation. 2009;16:265–71. https://doi.org/10.1159/000216184.

    Article  CAS  PubMed  Google Scholar 

  29. Itoi K, Jiang YQ, Iwasaki Y, Watson SJ. Regulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus. J Neuroendocrinol. 2004;16:348–55. https://doi.org/10.1111/j.0953-8194.2004.01172.x.

    Article  CAS  PubMed  Google Scholar 

  30. Mastorakos G, Chrousos GP, Weber JS. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab. 1993;77:1690–4.

    CAS  PubMed  Google Scholar 

  31. Crofford LJ, et al. Circadian relationships between interleukin (IL)-6 and hypothalamic-pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J Clin Endocrinol Metab. 1997;82:1279–83.

    Article  CAS  PubMed  Google Scholar 

  32. Inder WJ, et al. Elevated basal adrenocorticotropin and evidence for increased central opioid tone in highly trained male athletes. J Clin Endocrinol Metab. 1995;80:244–8.

    CAS  PubMed  Google Scholar 

  33. White A. Adrenocorticotropic hormone. Endocrinology. Publisher Elsevier Saunders; 2005:323–39.

    Google Scholar 

  34. Arvat E, et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab. 2001;86:1169–74.

    CAS  PubMed  Google Scholar 

  35. Jankord R, McAllister RM, Ganjam VK, Laughlin MH. Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise. Am J Physiol Regul Integr Comp Physiol. 2009;296:R728–34. https://doi.org/10.1152/ajpregu.90709.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gambacciani M, et al. Intrinsic pulsatility of ACTH release from the human pituitary in vitro. Clin Endocrinol. 1987;26:557–63.

    Article  CAS  Google Scholar 

  37. Xia Y, Wikberg JE. Localization of ACTH receptor mRNA by in situ hybridization in mouse adrenal gland. Cell Tissue Res. 1996;286:63–8.

    Article  CAS  PubMed  Google Scholar 

  38. Gorrigan RJ, Guasti L, King P, Clark AJ, Chan LF. Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland. J Mol Endocrinol. 2011;46:227–32. https://doi.org/10.1530/JME-11-0011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chan LF, Metherell LA, Clark AJ. Effects of melanocortins on adrenal gland physiology. Eur J Pharmacol. 2011;660:171–80. https://doi.org/10.1016/j.ejphar.2010.11.041.

    Article  CAS  PubMed  Google Scholar 

  40. John CD, Gavins FN, Buss NA, Cover PO, Buckingham JC. Annexin A1 and the formyl peptide receptor family: neuroendocrine and metabolic aspects. Curr Opin Pharmacol. 2008;8:765–76. https://doi.org/10.1016/j.coph.2008.09.005.

    Article  CAS  PubMed  Google Scholar 

  41. Buckingham JC. Glucocorticoids: exemplars of multi-tasking. Br J Pharmacol. 2006;147(Suppl 1):S258–68. https://doi.org/10.1038/sj.bjp.0706456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crumeyrolle-Arias M, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–17. https://doi.org/10.1016/j.psyneuen.2014.01.014.

    Article  CAS  PubMed  Google Scholar 

  43. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19:146–8. https://doi.org/10.1038/mp.2013.65.

    Article  CAS  PubMed  Google Scholar 

  44. Wong ML, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21:797–805. https://doi.org/10.1038/mp.2016.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huo R, et al. Microbiota modulate anxiety-like behavior and endocrine abnormalities in Hypothalamic-Pituitary-Adrenal axis. Front Cell Infect Microbiol. 2017;7:489. https://doi.org/10.3389/fcimb.2017.00489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vodicka M, et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav Immun. 2018;73:615–24. https://doi.org/10.1016/j.bbi.2018.07.007.

    Article  CAS  PubMed  Google Scholar 

  47. Papargyri P, et al. Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders. Expert Rev Endocrinol Metab. 2018;13:317–32. https://doi.org/10.1080/17446651.2018.1543585.

    Article  CAS  PubMed  Google Scholar 

  48. Goshen I, Yirmiya R. Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol. 2009;30:30–45. https://doi.org/10.1016/j.yfrne.2008.10.001.

    Article  CAS  PubMed  Google Scholar 

  49. Mohn CE, et al. Adrenal gland responses to lipopolysaccharide after stress and ethanol administration in male rats. Stress. 2011;14:216–26. https://doi.org/10.3109/10253890.2010.532254.

    Article  CAS  PubMed  Google Scholar 

  50. Gadek-Michalska A, Bugajski J. Interleukin-1 (IL-1) in stress-induced activation of limbic-hypothalamic-pituitary adrenal axis. Pharmacol Rep. 2010;62:969–82.

    Article  CAS  PubMed  Google Scholar 

  51. Gadek-Michalska A, Tadeusz J, Rachwalska P, Spyrka J, Bugajski J. Effect of repeated restraint on homotypic stress-induced nitric oxide synthases expression in brain structures regulating HPA axis. Pharmacol Rep. 2012;64:1381–90.

    Article  PubMed  Google Scholar 

  52. Gibb J, Hayley S, Poulter MO, Anisman H. Effects of stressors and immune activating agents on peripheral and central cytokines in mouse strains that differ in stressor responsivity. Brain Behav Immun. 2011;25:468–82. https://doi.org/10.1016/j.bbi.2010.11.008.

    Article  CAS  PubMed  Google Scholar 

  53. Marquez C, Nadal R, Armario A. The hypothalamic-pituitary-adrenal and glucose responses to daily repeated immobilisation stress in rats: individual differences. Neuroscience. 2004;123:601–12.

    Article  CAS  PubMed  Google Scholar 

  54. Dunn AJ. Cytokine activation of the HPA axis. Ann N Y Acad Sci. 2000;917:608–17.

    Article  CAS  PubMed  Google Scholar 

  55. Gadek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep. 2013;65:1655–62.

    Article  CAS  PubMed  Google Scholar 

  56. Beishuizen A, Thijs LG. Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res. 2003;9:3–24. https://doi.org/10.1179/096805103125001298.

    Article  CAS  PubMed  Google Scholar 

  57. Venezia AC, Quinlan E, Roth SM. A single bout of exercise increases hippocampal Bdnf: influence of chronic exercise and noradrenaline. Genes Brain Behav. 2017;16:800–11. https://doi.org/10.1111/gbb.12394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Balkaya M, Cho S. Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiol Dis. 2018;126:36. https://doi.org/10.1016/j.nbd.2018.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang R, et al. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism interacts with gender to influence cortisol responses to mental stress. Psychoneuroendocrinology. 2017;79:13–9. https://doi.org/10.1016/j.psyneuen.2017.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schule C, et al. Brain-derived neurotrophic factor Val66Met polymorphism and dexamethasone/CRH test results in depressed patients. Psychoneuroendocrinology. 2006;31:1019–25. https://doi.org/10.1016/j.psyneuen.2006.06.002.

    Article  CAS  PubMed  Google Scholar 

  61. Givalois L, et al. A single brain-derived neurotrophic factor injection modifies hypothalamo-pituitary-adrenocortical axis activity in adult male rats. Mol Cell Neurosci. 2004;27:280–95. https://doi.org/10.1016/j.mcn.2004.07.002.

    Article  CAS  PubMed  Google Scholar 

  62. Jankord R, Ganjam VK, Turk JR, Hamilton MT, Laughlin MH. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs. Appl Physiol Nutr Metab. 2008;33:461–9. https://doi.org/10.1139/H08-022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campbell JE, Rakhshani N, Fediuc S, Bruni S, Riddell MC. Voluntary wheel running initially increases adrenal sensitivity to adrenocorticotrophic hormone, which is attenuated with long-term training. J Appl Physiol. 2009;106:66–72. https://doi.org/10.1152/japplphysiol.91128.2008.

    Article  PubMed  Google Scholar 

  64. Fediuc S, Campbell JE, Riddell MC. Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats. J Appl Physiol. 2006;100:1867–75. https://doi.org/10.1152/japplphysiol.01416.2005.

    Article  CAS  PubMed  Google Scholar 

  65. Smoak B, Deuster P, Rabin D, Chrousos G. Corticotropin-releasing hormone is not the sole factor mediating exercise-induced adrenocorticotropin release in humans. J Clin Endocrinol Metab. 1991;73:302–6.

    Article  CAS  PubMed  Google Scholar 

  66. Chalimoniuk M, Chrapusta SJ, Lukacova N, Langfort J. Endurance training upregulates the nitric oxide/soluble guanylyl cyclase/cyclic guanosine 3′,5′-monophosphate pathway in the striatum, midbrain and cerebellum of male rats. Brain Res. 2015;1618:29–40. https://doi.org/10.1016/j.brainres.2015.05.020.

    Article  CAS  PubMed  Google Scholar 

  67. TaheriChadorneshin H, Cheragh-Birjandi S, Ramezani S, Abtahi-Eivary SH. Comparing sprint and endurance training on anxiety, depression and its relation with brain-derived neurotrophic factor in rats. Behav Brain Res. 2017;329:1–5. https://doi.org/10.1016/j.bbr.2017.04.034.

    Article  CAS  PubMed  Google Scholar 

  68. Skoluda N, Dettenborn L, Stalder T, Kirschbaum C. Elevated hair cortisol concentrations in endurance athletes. Psychoneuroendocrinology. 2012;37:611–7. https://doi.org/10.1016/j.psyneuen.2011.09.001.

    Article  CAS  PubMed  Google Scholar 

  69. Duclos M, Corcuff JB, Pehourcq F, Tabarin A. Decreased pituitary sensitivity to glucocorticoids in endurance-trained men. Eur J Endocrinol. 2001;144:363–8.

    Article  CAS  PubMed  Google Scholar 

  70. Faria CD, et al. Impact of prolonged low-grade physical training on the in vivo glucocorticoid sensitivity and on glucocorticoid receptor-alpha mRNA levels of obese adolescents. Horm Res Paediatr. 2010;73:458–64. https://doi.org/10.1159/000313591.

    Article  CAS  PubMed  Google Scholar 

  71. Jones TW, Howatson G, Russell M, French DN. Performance and endocrine responses to differing ratios of concurrent strength and endurance training. J Strength Cond Res. 2016;30:693–702. https://doi.org/10.1519/JSC.0000000000001135.

    Article  PubMed  Google Scholar 

  72. Grandys M, et al. The importance of the training-induced decrease in basal cortisol concentration in the improvement in muscular performance in humans. Physiol Res. 2016;65:109–20.

    Article  CAS  PubMed  Google Scholar 

  73. Seifert T, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298:R372–7. https://doi.org/10.1152/ajpregu.00525.2009.

    Article  CAS  PubMed  Google Scholar 

  74. Zoladz JA, et al. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59(Suppl 7):119–32.

    PubMed  Google Scholar 

  75. Wright HE, Selkirk GA, McLellan TM. HPA and SAS responses to increasing core temperature during uncompensable exertional heat stress in trained and untrained males. Eur J Appl Physiol. 2010;108:987–97. https://doi.org/10.1007/s00421-009-1294-0.

    Article  PubMed  Google Scholar 

  76. Duclos M, et al. Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin Endocrinol. 1998;48:493–501.

    Article  CAS  Google Scholar 

  77. Tabata I, Ogita F, Miyachi M, Shibayama H. Effect of low blood glucose on plasma CRF, ACTH, and cortisol during prolonged physical exercise. J Appl Physiol. 1991;71:1807–12.

    Article  CAS  PubMed  Google Scholar 

  78. Bobbert T, et al. Adaptation of the hypothalamic-pituitary hormones during intensive endurance training. Clin Endocrinol. 2005;63:530–6. https://doi.org/10.1111/j.1365-2265.2005.02377.x.

    Article  CAS  Google Scholar 

  79. Ratel S. High-intensity and resistance training and elite young athletes. Med Sport Sci. 2011;56:84–96. https://doi.org/10.1159/000320635.

    Article  PubMed  Google Scholar 

  80. Fatouros I, et al. Acute resistance exercise results in catecholaminergic rather than hypothalamic-pituitary-adrenal axis stimulation during exercise in young men. Stress. 2010;13:461–8. https://doi.org/10.3109/10253891003743432.

    Article  CAS  PubMed  Google Scholar 

  81. Minetto MA, et al. Corticotroph axis sensitivity after exercise: comparison between elite athletes and sedentary subjects. J Endocrinol Invest. 2007;30:215–23.

    Article  CAS  PubMed  Google Scholar 

  82. Cintineo HP, et al. Acute physiological responses to an intensity-and time-under-tension-equated single- vs. multiple-set resistance training bout in trained men. J Strength Cond Res. 2018;32:3310–8. https://doi.org/10.1519/JSC.0000000000002872.

    Article  PubMed  Google Scholar 

  83. Arazi H, Damirchi A, Asadi A. Age-related hormonal adaptations, muscle circumference and strength development with 8 weeks moderate intensity resistance training. Ann Endocrinol (Paris). 2013;74:30–5. https://doi.org/10.1016/j.ando.2012.11.004.

    Article  CAS  Google Scholar 

  84. Kyrolainen H, et al. Effects of combined strength and endurance training on physical performance and biomarkers of healthy young women. J Strength Cond Res. 2018;32:1554–61. https://doi.org/10.1519/JSC.0000000000002034.

    Article  PubMed  Google Scholar 

  85. Ammar A, et al. Acute and delayed responses of steroidal hormones, blood lactate and biomarkers of muscle damage after a resistance training session: time-of-day effects. J Sports Med Phys Fitness. 2018;58:980–9. https://doi.org/10.23736/S0022-4707.17.07048-7.

    Article  CAS  PubMed  Google Scholar 

  86. Sedliak M, et al. Morphological, molecular and hormonal adaptations to early morning versus afternoon resistance training. Chronobiol Int. 2018;35:450–64. https://doi.org/10.1080/07420528.2017.1411360.

    Article  CAS  PubMed  Google Scholar 

  87. Sheikholeslami-Vatani D, Ahmadi S, Salavati R. Comparison of the effects of resistance exercise orders on number of repetitions, serum IGF-1, testosterone and cortisol levels in normal-weight and obese men. Asian J Sports Med. 2016;7:e30503. https://doi.org/10.5812/asjsm.30503.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Marston KJ, et al. Intense resistance exercise increases peripheral brain-derived neurotrophic factor. J Sci Med Sport. 2017;20:899–903. https://doi.org/10.1016/j.jsams.2017.03.015.

    Article  PubMed  Google Scholar 

  89. Church DD, et al. Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. J Appl Physiol (1985). 2016;121:123–8. https://doi.org/10.1152/japplphysiol.00233.2016.

    Article  Google Scholar 

  90. Nuvagah Forti L, et al. High versus low load resistance training: the effect of 24 weeks detraining on serum Brain Derived-Neurotrophic Factor (BDNF) in older adults. J Frailty Aging. 2017;6:53–8. https://doi.org/10.14283/jfa.2017.2.

    Article  CAS  PubMed  Google Scholar 

  91. Wang J, et al. The impact of water-floating and high-intensity exercise on rat’s HPA axis and interleukins concentrations. Acta Physiol Hung. 2012;99:261–70. https://doi.org/10.1556/APhysiol.99.2012.3.3.

    Article  CAS  PubMed  Google Scholar 

  92. Davies CT, Few JD. Effects of exercise on adrenocortical function. J Appl Physiol. 1973;35:887–91. https://doi.org/10.1152/jappl.1973.35.6.887.

    Article  CAS  PubMed  Google Scholar 

  93. Hill EE, et al. Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Invest. 2008;31:587–91. https://doi.org/10.1007/BF03345606.

    Article  CAS  PubMed  Google Scholar 

  94. VanBruggen MD, Hackney AC, McMurray RG, Ondrak KS. The relationship between serum and salivary cortisol levels in response to different intensities of exercise. Int J Sports Physiol Perform. 2011;6:396–407.

    Article  PubMed  Google Scholar 

  95. Ross RE, Saladin ME, George MS, Gregory CM. High-intensity aerobic exercise acutely increases brain-derived neurotrophic factor. Med Sci Sports Exerc. 2019;51(8):1698–709. https://doi.org/10.1249/MSS.0000000000001969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Inder WJ, Hellemans J, Swanney MP, Prickett TC, Donald RA. Prolonged exercise increases peripheral plasma ACTH, CRH, and AVP in male athletes. J Appl Physiol. 1998;85:835–41.

    Article  CAS  PubMed  Google Scholar 

  97. Deuster PA, et al. High intensity exercise promotes escape of adrenocorticotropin and cortisol from suppression by dexamethasone: sexually dimorphic responses. J Clin Endocrinol Metab. 1998;83:3332–8. https://doi.org/10.1210/jcem.83.9.5110.

    Article  CAS  PubMed  Google Scholar 

  98. Rodriguez AL, et al. Acute high-intensity interval exercise induces greater levels of serum brain-derived neurotrophic factor in obese individuals. Exp Biol Med (Maywood). 2018;243(14):1153–60. https://doi.org/10.1177/1535370218812191.

    Article  CAS  Google Scholar 

  99. Zelzer S, et al. Work intensity, low-grade inflammation, and oxidative status: a comparison between office and slaughterhouse workers. Oxidative Med Cell Longev. 2018;2018:2737563. https://doi.org/10.1155/2018/2737563.

    Article  CAS  Google Scholar 

  100. Popovic B, et al. Acute response to endurance exercise stress: focus on catabolic/anabolic interplay between cortisol, testosterone, and sex hormone binding globulin in professional athletes. J Med Biochem. 2019;38:6–12. https://doi.org/10.2478/jomb-2018-0016.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Choi ES, et al. Changes in hormone levels of participants in a 622-km ultramarathon race based on distance and recovery period. J Sports Med Phys Fitness. 2018;59(4):700–7. https://doi.org/10.23736/S0022-4707.18.08533-X.

    Article  PubMed  Google Scholar 

  102. Wittert GA, Livesey JH, Espiner EA, Donald RA. Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc. 1996;28:1015–9.

    Article  CAS  PubMed  Google Scholar 

  103. Georgopoulos NA, et al. Abolished circadian rhythm of salivary cortisol in elite artistic gymnasts. Steroids. 2011;76:353–7. https://doi.org/10.1016/j.steroids.2010.10.013.

    Article  CAS  PubMed  Google Scholar 

  104. Schmikli SL, de Vries WR, Brink MS, Backx FJ. Monitoring performance, pituitary-adrenal hormones and mood profiles: how to diagnose non-functional over-reaching in male elite junior soccer players. Br J Sports Med. 2012;46:1019. https://doi.org/10.1136/bjsports-2011-090492.

    Article  PubMed  Google Scholar 

  105. Wisen AG, Ekberg K, Wohlfart B, Ekman R, Westrin A. Plasma ANP and BNP during exercise in patients with major depressive disorder and in healthy controls. J Affect Disord. 2011;129:371–5. https://doi.org/10.1016/j.jad.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

  106. Carr BR, Mason JI. The effects of alpha-human atrial natriuretic polypeptide on steroidogenesis by fetal zone cells of the human fetal adrenal gland. Am J Obstet Gynecol. 1988;159:1361–5.

    Article  CAS  PubMed  Google Scholar 

  107. Crandall ME, Gregg CM. In vitro evidence for an inhibitory effect of atrial natriuretic peptide on vasopressin release. Neuroendocrinology. 1986;44:439–45.

    Article  CAS  PubMed  Google Scholar 

  108. Strohle A, Holsboer F. Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry. 2003;36(Suppl 3):S207–14. https://doi.org/10.1055/s-2003-45132.

    Article  PubMed  Google Scholar 

  109. Strohle A, Kellner M, Holsboer F, Wiedemann K. Atrial natriuretic hormone decreases endocrine response to a combined dexamethasone-corticotropin-releasing hormone test. Biol Psychiatry. 1998;43:371–5.

    Article  CAS  PubMed  Google Scholar 

  110. Bonifazi M, et al. Glucocorticoid receptor mRNA expression in peripheral blood mononuclear cells in high trained compared to low trained athletes and untrained subjects. J Endocrinol Invest. 2009;32:816–20. https://doi.org/10.3275/6428.

    Article  CAS  PubMed  Google Scholar 

  111. Park E, et al. Changes in basal hypothalamo-pituitary-adrenal activity during exercise training are centrally mediated. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1360–71. https://doi.org/10.1152/ajpregu.00103.2005.

    Article  CAS  PubMed  Google Scholar 

  112. de Graaf-Roelfsema E, Keizer HA, van Breda E, Wijnberg ID, van der Kolk JH. Hormonal responses to acute exercise, training and overtraining. A review with emphasis on the horse. Vet Q. 2007;29:82–101.

    Article  PubMed  Google Scholar 

  113. Cayado P, et al. Hormone response to training and competition in athletic horses. Equine Vet J Suppl. 2006;38:274–8.

    Article  Google Scholar 

  114. Banfi G, Dolci A. Free testosterone/cortisol ratio in soccer: usefulness of a categorization of values. J Sports Med Phys Fitness. 2006;46:611–6.

    CAS  PubMed  Google Scholar 

  115. Angeli A, Minetto M, Dovio A, Paccotti P. The overtraining syndrome in athletes: a stress-related disorder. J Endocrinol Investig. 2004;27:603–12.

    Article  CAS  Google Scholar 

  116. Uusitalo AL, Huttunen P, Hanin Y, Uusitalo AJ, Rusko HK. Hormonal responses to endurance training and overtraining in female athletes. Clin J Sport Med. 1998;8:178–86.

    Article  CAS  PubMed  Google Scholar 

  117. Meeusen R, et al. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. Eur J Appl Physiol. 2004;91:140–6. https://doi.org/10.1007/s00421-003-0940-1.

    Article  CAS  PubMed  Google Scholar 

  118. Lehmann M, Foster C, Dickhuth HH, Gastmann U. Autonomic imbalance hypothesis and overtraining syndrome. Med Sci Sports Exerc. 1998;30:1140–5.

    Article  CAS  PubMed  Google Scholar 

  119. Lehmann MJ, et al. Training and overtraining: an overview and experimental results in endurance sports. J Sports Med Phys Fitness. 1997;37:7–17.

    CAS  PubMed  Google Scholar 

  120. Mor A, Kayacan Y, Ipekoglu G, Arslanoglu E. Effect of carbohydrate-electrolyte consumption on insulin, cortisol hormones and blood glucose after high-intensity exercise. Arch Physiol Biochem. 2019;125(4):344–50. https://doi.org/10.1080/13813455.2018.1465098.

    Article  CAS  PubMed  Google Scholar 

  121. Svendsen IS, Killer SC, Gleeson M. Influence of hydration status on changes in plasma cortisol, leukocytes, and antigen-stimulated cytokine production by whole blood culture following prolonged exercise. ISRN Nutr. 2014;2014:561401. https://doi.org/10.1155/2014/561401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dmitrasinovic G, et al. ACTH, cortisol and IL-6 levels in athletes following magnesium supplementation. J Med Biochem. 2016;35:375–84. https://doi.org/10.1515/jomb-2016-0021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Burman MA, Hamilton KL, Gewirtz JC. Role of corticosterone in trace and delay conditioned fear-potentiated startle in rats. Behav Neurosci. 2010;124:294–9. https://doi.org/10.1037/a0018911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cooper MA, Huhman KL. Blocking corticotropin-releasing factor-2 receptors, but not corticotropin-releasing factor-1 receptors or glucocorticoid feedback, disrupts the development of conditioned defeat. Physiol Behav. 2010;101:527–32. https://doi.org/10.1016/j.physbeh.2010.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Row BW, Dohanich GP. Post-training administration of corticotropin-releasing hormone (CRH) enhances retention of a spatial memory through a noradrenergic mechanism in male rats. Neurobiol Learn Mem. 2008;89:370–8. https://doi.org/10.1016/j.nlm.2007.10.008.

    Article  CAS  PubMed  Google Scholar 

  126. Chen Y, et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci U S A. 2010;107:13123–8. https://doi.org/10.1073/pnas.1003825107.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. St-Pierre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

St-Pierre, D.H., Richard, D. (2020). The Effect of Exercise on the Hypothalamic-Pituitary-Adrenal Axis. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_3

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics