Skip to main content

A New Perspective for the Characterization of Crown Rim Kinematics

  • Conference paper
  • First Online:
Droplet Interactions and Spray Processes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 121))

Abstract

Droplet impact on wall-films are typical examples where ‘splashing’, the fragmentation of the crown rim during its expansion, takes place. The triggering instability mechanisms are directly linked to crown rim kinematics. This experimental study analyses which geometrical parameter is physically the most suited for studying crown rim kinematics during expansion. The problems associated with the classical geometrical parameters rim radius \(R_{R}\) and height \(H_{R}\) (often considered separately) are presented. First, the radial and axial rim expansions have different durations which prevents the definition of rim expansion in a unified way. Second, considering separately \(H_{R}\) and \(R_{R}\) leads to an incomplete picture of the impact process in terms of momentum transfer to the rim since the crown aspect ratio varies strongly with the impact conditions. We show that considering the crown rim displacement instead solves these problems: a single peak during the impact process enables a clear definition of rim expansion (duration and magnitude). Furthermore, the temporal evolution of the rim displacement during expansion could systematically be fitted by a quadratic curve with high accuracy, which indicates a constant deceleration process. Thus, considering the rim displacement reveals important features of the crown rim kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agbaglah, G., Josserand, C., Zaleski, S.: Longitudinal instability of a liquid rim. Phys. Fluids 25(2), 022103 (2013)

    Google Scholar 

  2. Banks, D., Ajawara, C., Sanchez, R., Surti, H., Aguilar, G.: Effects of drop and film viscosity on drop impacts onto thin films. Atom. Sprays 23(6), 525–540 (2013). https://doi.org/10.1615/AtomizSpr.2013007494

  3. Bernard, R., Foltyn, P., Geppert, A., Lamanna, G., Weigand, B.: Generalized analysis of the deposition/splashing limit for one- and two-component droplet impacts upon thin films. ILASS-Europe (2017). https://doi.org/10.4995/ILASS2017.2017.4810

  4. Bernard, R., Geppert, A., Vaikuntanathan, V., Lamanna, G., Weigand, B.: On the scaling of crown rim diameter during droplet impact on thin wall-films. In: ICLASS 2018 (2018)

    Google Scholar 

  5. Bremond, N., Villermaux, E.: Atomization by jet impact. J. Fluid Mech. 549, 273–306 (2006)

    Article  Google Scholar 

  6. Cossali, G., Marengo, M., Coghe, A., Zhdanov, S.: The role of time in single drop splash on thin film. Exp. Fluids 36(6), 888–900 (2004)

    Article  Google Scholar 

  7. Davidson, M.R.: Spreading of an inviscid drop impacting on a liquid film. Chem. Eng. Sci. 57(17), 3639–3647 (2002)

    Article  Google Scholar 

  8. Deegan, R., Brunet, P., Eggers, J.: Complexities of splashing. Nonlinearity 21(1), C1 (2007)

    Article  MathSciNet  Google Scholar 

  9. Fujimoto, H., Ogino, T., Takuda, H., Hatta, N.: Collision of a droplet with a hemispherical static droplet on a solid. Int. J. Multiph. Flow 27(7), 1227–1245 (2001)

    Article  Google Scholar 

  10. Gao, X., Li, R.: Impact of a single drop on a flowing liquid film. Phys. Rev. E 92, 053005 (2015). https://doi.org/10.1103/PhysRevE.92.053005

    Article  MathSciNet  Google Scholar 

  11. Geppert, A., Chatzianagnostou, D., Mesiter, C., Gomaa, H., Lamanna, G., Weigand, B.: Classification of impact morphology and splashing/deposition limit for n-hexadecane. Atom. Sprays 26, 983–1007 (2016). https://doi.org/10.1615/AtomizSpr.2015013352

  12. Geppert, A., Terzis, A., Lamanna, G., Marengo, M., Weigand, B.: A benchmark study for the crown-type splashing dynamics of one and two-component droplet wall-film interactions. Exp. Fluids 58, 172(1–27) (2017). https://doi.org/10.1007/s00348-017-2447-2

  13. Gueyffier, D., Zaleski, S.: Formation de digitations lors de l’impact d’une goutte sur un film liquide. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics-Physics-Astronomy 326(12), 839–844 (1998)

    Google Scholar 

  14. Kittel, H.M., Roisman, I.V., Tropea, C.: Splash of a drop impacting onto a solid substrate wetted by a thin film of another liquid. Phys. Rev. Fluids 3, 073601(1–17) (2018). https://doi.org/10.1103/PhysRevFluids.3.073601

  15. Krechetnikov, R., Homsy, G.M.: Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555–559 (2009). https://doi.org/10.1016/j.jcis.2008.11.079

    Article  Google Scholar 

  16. Lee, S.H., Hur, N., Kang, S.: A numerical analysis of drop impact on liquid film by using a level set method. J. Mech. Sci. Technol. 25(10), 2567 (2011)

    Article  Google Scholar 

  17. Liang, G., Guo, Y., Shen, S., Yang, Y.: Crown behavior and bubble entrainment during a drop impact on a liquid film. Theor. Comput. Fluid Dyn. 28(2), 159–170 (2014)

    Article  Google Scholar 

  18. Liang, G., Mudawar, I.: Review of mass and momentum interactions during drop impact on a liquid film. Int. J. Heat Mass Transf. 101, 577–599 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.062

    Article  Google Scholar 

  19. Mukherjee, S., Abraham, J.: Crown behavior in drop impact on wet walls. Phys. Fluids 19(5), 052103 (2007)

    Article  Google Scholar 

  20. Mundo, C., Sommerfeld, M., Tropea, C.: Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 21(2), 151–173 (1995)

    Article  Google Scholar 

  21. Rieber, M., Frohn, A.: A numerical study on the mechanism of splashing. Int. J. Heat Fluid Flow 20, 455–461 (1999). https://doi.org/10.1016/S0142-727X(99)00033-8

    Article  Google Scholar 

  22. Roisman, I.V.: On the instability of a free viscous rim. J. Fluid Mech. 661, 206–228 (2010)

    Article  MathSciNet  Google Scholar 

  23. Roisman, I.V., van Hinsberg, N.P., Tropea, C.: Propagation of a kinematic instability in a liquid layer: capillary and gravity effects. Phys. Rev. E 77, 046305 (2008). https://doi.org/10.1103/PhysRevE.77.046305

    Article  Google Scholar 

  24. Roisman, I.V., Tropea, C.: Impact of a drop onto a wetted wall: description of crown formation and propagation. J. Fluid Mech. 472, 373–397 (2002). https://doi.org/10.1017/S0022112002002434

    Article  MathSciNet  MATH  Google Scholar 

  25. Šikalo, Š., Ganić, E.: Phenomena of droplet-surface interactions. Exp. Thermal Fluid Sci. 31(2), 97–110 (2006)

    Article  Google Scholar 

  26. Terzis, A., Kirsch, M., Vaikuntanathan, V., Geppert, A., Lamanna, G., Weigand, B.: Splashing characteristics of diesel exhaust fluid (adblue) droplets impacting on urea-water solution films. Exp. Thermal Fluid Sci. 102, 152–162 (2019). https://doi.org/10.1016/j.expthermflusci.2018.11.002

    Article  Google Scholar 

  27. Trujillo, M., Lee, C.: Modeling crown formation due to the splashing of a droplet. Phys. Fluids 13(9), 2503–2516 (2001)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Dandekar, R., Bustos, N., Poulain, S., Bourouiba, L.: Universal rim thickness in unsteady sheet fragmentation. Phys. Rev. Lett. 120, 204503(1–6) (2018). https://doi.org/10.1103/PhysRevLett.120.204503

  29. Worthington, A.M., Cole, R.S.: Impact with a liquid surface, studied by the aid of instantaneous photography. Philosoph. Trans. R. Soc. Lond. Ser. A 189, 137–148 (1897)

    Google Scholar 

  30. Yarin, A.L., Weiss, D.A.: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141–173 (1995). https://doi.org/10.1017/S0022112095002266

    Article  Google Scholar 

  31. Yoon, S.S., Jepsen, R.A., James, S.C., Liu, J., Aguilar, G.: Are drop-impact phenomena described by Rayleigh-Taylor or Kelvin-Helmholtz theory? Drying Technol. 27, 316–321 (2009). https://doi.org/10.1080/07373930802682858

    Article  Google Scholar 

  32. Zhang, L.V., Brunet, P., Eggers, J., Deegan, R.D.: Wavelength selection in the crown splash. Phys. Fluids 22, 122105(1–9) (2010). https://doi.org/10.1063/1.3526743

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) within the frame of the international research training group “Droplet Interaction Technologies”—DROPIT (GRK2160/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernard, R., Vaikuntanathan, V., Lamanna, G., Weigand, B. (2020). A New Perspective for the Characterization of Crown Rim Kinematics. In: Lamanna, G., Tonini, S., Cossali, G., Weigand, B. (eds) Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33338-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33337-9

  • Online ISBN: 978-3-030-33338-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics