Skip to main content

Cyclic di-GMP and the Regulation of Biofilm Dispersion

  • Chapter
  • First Online:
Microbial Cyclic Di-Nucleotide Signaling

Abstract

In nature, bacteria are primarily found as residents of surface-associated communities called biofilms. The formation of biofilms is a cyclical process that is initiated by single planktonic cells attaching to a surface, and comes full cycle when cells disperse from the mature biofilm to resume a planktonic lifestyle. Dispersion occurs in response to various signals and environmental cues, and results in surface-attached organisms liberating themselves from matrix-encased biofilms, apparent by single cells actively escaping from the biofilm, leaving behind eroded biofilms and microcolonies having central voids. Given the cyclic process of biofilm formation, it is not surprising that dispersion, like biofilm formation, is coincident with significant changes in the levels of the second messenger cyclic di-GMP. However, dispersion is not simply a reversion from the biofilm lifestyle to the planktonic mode of growth, as dispersed cells have been described as having a phenotype that is distinct from planktonic and biofilm cells. Using primarily the pathogen P. aeruginosa as example, this chapter provides an up-to-date compendium of cyclic di-GMP pathways connected to biofilm dispersion, including how sensing a diverse array of dispersion cues leads to the destruction of cyclic di-GMP, the escape from the biofilm matrix, and the appropriate phenotypic responses associated with dispersed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  2. Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23:1733–1736

    Article  CAS  PubMed  Google Scholar 

  3. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  4. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705

    Article  CAS  PubMed  Google Scholar 

  6. Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davies DG (2011) Biofilm dispersion. In: Biofilm highlights. Springer, Berlin, pp 1–28

    Google Scholar 

  8. Purevdorj-Gage B, Costerton WJ, Stoodley P (2005) Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151(5):1569–1576. https://doi.org/10.1099/mic.0.27536-0

    Article  CAS  PubMed  Google Scholar 

  9. Davies DG (1999) Regulation of matrix polymer in biofilm formation and dispersion. In: Wingender J, Neu TR, Flemming H-C (eds) Microbial extrapolymeric substances, characterization, structure and function. Springer, Berlin, pp 93–112

    Google Scholar 

  10. Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191(5):1393–1403. https://doi.org/10.1128/jb.01214-08

    Article  CAS  PubMed  Google Scholar 

  11. Basu Roy A, Sauer K (2014) Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol Microbiol 94(4):771–793. https://doi.org/10.1111/mmi.12802

    Article  CAS  PubMed  Google Scholar 

  12. Basu Roy A, Petrova OE, Sauer K (2012) The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 194:2904–2915. https://doi.org/10.1128/jb.05346-11

    Article  Google Scholar 

  13. Morgan R, Kohn S, Hwang S-H, Hassett DJ, Sauer K (2006) BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188(21):7335–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petrova OE, Sauer K (2012) Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc Natl Acad Sci U S A 109(41):16690–16695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petrova OE, Cherny KE, Sauer K (2015) The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA. J Bacteriol 197(1):174–187. https://doi.org/10.1128/jb.02244-14

    Article  PubMed  Google Scholar 

  16. Sauer K, Cullen MC, Rickard AH, Zeef LAH, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186(21):7312–7326. https://doi.org/10.1128/jb.186.21.7312-7326.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S (2009) Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2(3):370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191(23):7333–7342. https://doi.org/10.1128/jb.00975-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA (2007) BifA, a c-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:8165–8178. https://doi.org/10.1128/jb.00586-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Merritt JH, Brothers KM, Kuchma SL, O’Toole GA (2007) SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189(22):8154–8164. https://doi.org/10.1128/jb.00585-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9(2):218–228. https://doi.org/10.1016/j.mib.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  22. Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134. https://doi.org/10.1111/j.1365-2958.2004.04206.x

    Article  CAS  PubMed  Google Scholar 

  23. Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188(7):2681–2691. https://doi.org/10.1128/jb.188.7.2681-2691.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639. https://doi.org/10.1111/j.1365-2958.2005.04697.x

    Article  CAS  PubMed  Google Scholar 

  25. Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54(1):75–88. https://doi.org/10.1111/j.1365-2958.2004.04253.x

    Article  CAS  PubMed  Google Scholar 

  26. Poudyal B, Sauer K (2018) PA3177 encodes an active diguanylate cyclase that contributes to the biofilm antimicrobial tolerance but not biofilm formation by P. aeruginosa. Antimicrob Agents Chemother 62(10):e01049–e01018. https://doi.org/10.1128/aac.01049-18

  27. Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75(4):815–826. https://doi.org/10.1111/j.1365-2958.2009.06793.x

    Article  CAS  PubMed  Google Scholar 

  28. Chua SL, Hultqvist LD, Yuan M, Rybtke M, Nielsen TE, Givskov M, Tolker-Nielsen T, Yang L (2015) In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation. Nat Protoc 10(8):1165–1180. https://doi.org/10.1038/nprot.2015.067

    Article  CAS  PubMed  Google Scholar 

  29. An S, Wu J, Zhang L-H (2010) Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol 76(24):8160–8173. https://doi.org/10.1128/aem.01233-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thormann KM, Saville RM, Shukla S, Spormann AM (2005) Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187(3):1014–1021. https://doi.org/10.1128/jb.187.3.1014-1021.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stacy A, Everett J, Jorth P, Trivedi U, Rumbaugh KP, Whiteley M (2014) Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci U S A 111(21):7819–7824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7(6):894–904. https://doi.org/10.1111/j.1462-2920.2005.00775.x

    Article  CAS  PubMed  Google Scholar 

  33. Delaquis PJ, Caldwell DE, Lawrence JR, McCurdy AR (1989) Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress. Microb Ecol 18(3):199–210

    Article  CAS  PubMed  Google Scholar 

  34. Delille A, Quiles F, Humbert F (2007) In situ monitoring of the nascent Pseudomonas fluorescens biofilm response to variations in the dissolved organic carbon level in low-nutrient water by attenuated total reflectance-Fourier transform infrared spectroscopy. Appl Environ Microbiol 73(18):5782–5788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4(5):e5513

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huynh TT, McDougald D, Klebensberger J, Al Qarni B, Barraud N, Rice SA, Kjelleberg S, Schleheck D (2012) Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS One 7(8):e42874. https://doi.org/10.1371/journal.pone.0042874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petrova OE, Sauer K (2012) PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms. J Bacteriol 194(21):5817–5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N (2013) NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by a MHYT-domain coupled phosphodiesterase. J Bacteriol 195(16):3531–3542. https://doi.org/10.1128/jb.01156-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Petrova OE, Su S, Lau GW, Panmanee W, Na R, Hassett DJ, Davies DG, Sauer K (2014) BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS Pathog 10(6):e1004168. https://doi.org/10.1371/journal.ppat.1004168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. James GA, Korber DR, Caldwell DE, Costerton JW (1995) Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol 177(4):907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marks LR, Davidson BA, Knight PR, Hakansson AP (2013) Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio 4(4):e00438–e00413

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dimpy Kaliaa GM, Nakayamaa S, Zhenga Y, Zhoua J, Luoa Y, Guoa M, Roembkea BT, Sintim HO (2013) Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 42:305–341

    Article  Google Scholar 

  43. Carlson HK, Vance RE, Marletta MA (2010) H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol Microbiol 77(4):930–942. https://doi.org/10.1111/j.1365-2958.2010.07259.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu N, Xu Y, Hossain S, Huang N, Coursolle D, Gralnick JA, Boon EM (2012) Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Biochemistry 51(10):2087–2099. https://doi.org/10.1021/bi201753f

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt I, Steenbakkers PJ, op den Camp HJ, Schmidt K, Jetten MS (2004) Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186(9):2781–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dow JM, Crossman L, Findlay K, He Y-Q, Feng J-X, Tang J-L (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100(19):10995–11000. https://doi.org/10.1073/pnas.1833360100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dean SN, Chung M-C, van Hoek ML (2015) Burkholderia diffusible signal factor signals to Francisella novicida to disperse biofilm and increase siderophore production. Appl Environ Microbiol 81(20):7057–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12(7):789–796

    Article  CAS  PubMed  Google Scholar 

  49. Lanter BB, Sauer K, Davies DG (2014) Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio 5(3):01206–01214. https://doi.org/10.1128/mBio.01206-14

    Article  CAS  Google Scholar 

  50. Hay AJ, Zhu J (2015) Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization. Infect Immun 83(1):317–323

    Article  PubMed  Google Scholar 

  51. Amari DT, Marques CNH, Davies DG (2013) The putative enoyl-coenzyme a hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid. J Bacteriol 195(20):4600–4610. https://doi.org/10.1128/jb.00707-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rahmani-Badi A, Sepehr S, Fallahi H, Heidari-Keshel S (2015) Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique. Front Microbiol 6:383. https://doi.org/10.3389/fmicb.2015.00383

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He Y-W, Zhang L-H, Heeb S, Camara M, Williams P, Dow JM (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103(17):6712–6717. https://doi.org/10.1073/pnas.0600345103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM (2010) Cell–cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A 107(13):5989–5994. https://doi.org/10.1073/pnas.0912839107

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chin K-H, Lee Y-C, Tu Z-L, Chen C-H, Tseng Y-H, Yang J-M, Ryan RP, McCarthy Y, Dow JM, Wang AHJ, Chou S-H (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell–cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396(3):646–662. https://doi.org/10.1016/j.jmb.2009.11.076

    Article  CAS  PubMed  Google Scholar 

  56. Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185(15):4585–4592. https://doi.org/10.1128/jb.185.15.4585-4592.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barraud N, Hassett DJ, Hwang S-H, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353. https://doi.org/10.1128/jb.00779-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cutruzzolà F, Frankenberg-Dinkel N (2016) Origin and impact of nitric oxide in Pseudomonas aeruginosa biofilms. J Bacteriol 198(1):55–65. https://doi.org/10.1128/jb.00371-15

    Article  PubMed  Google Scholar 

  59. Galperin MY, Gaidenko TA, Mulkidjanian AY, Nakano M, Price CW (2001) MHYT, a new integral membrane sensor domain. FEMS Microbiol Lett 205(1):17–23

    Article  CAS  PubMed  Google Scholar 

  60. Chambers JR, Cherny KE, Sauer K (2017) Susceptibility of Pseudomonas aeruginosa dispersed cells to antimicrobial agents is dependent on the dispersion cue and class of the antimicrobial agent used. Antimicrob Agents Chemother 61(12):e00846–e00817. https://doi.org/10.1128/aac.00846-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, Kjelleberg S, Tolker-Nielsen T, Givskov M, Yang L (2014) Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyle. Nat Commun 5:4462. https://doi.org/10.1038/ncomms5462

    Article  CAS  PubMed  Google Scholar 

  62. Chua SL, Tan SY-Y, Rybtke MT, Chen Y, Rice SA, Kjelleberg S, Tolker-Nielsen T, Yang L, Givskov M (2013) Bis-(3′-5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(5):2066–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fleming D, Rumbaugh K (2018) The consequences of biofilm dispersal on the host. Sci Rep 8(1):10738. https://doi.org/10.1038/s41598-018-29121-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Flemming H-C (2016) EPS—then and now. Microorganisms 4(4):41

    Article  PubMed Central  Google Scholar 

  65. Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49(4):905–918. https://doi.org/10.1046/j.1365-2958.2003.03615.x

    Article  CAS  PubMed  Google Scholar 

  66. Monds RD, Newell PD, Gross RH, O’Toole GA (2007) Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 63(3):656–679. https://doi.org/10.1111/j.1365-2958.2006.05539.x

    Article  CAS  PubMed  Google Scholar 

  67. Rybtke M, Berthelsen J, Yang L, Høiby N, Givskov M, Tolker-Nielsen T (2015) The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. Microbiology 4(6):917–930

    CAS  Google Scholar 

  68. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75(4):827–842. https://doi.org/10.1111/j.1365-2958.2009.06991.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–218. https://doi.org/10.1177/0022034509359403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J Bacteriol 185(16):4693–4698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu S, Su T, Wu H, Liu S, Wang D, Zhao T, Jin Z, Du W, Zhu M-J, Chua SL, Yang L, Zhu D, Gu L, Ma LZ (2015) PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 25(12):1352–1367. https://doi.org/10.1038/cr.2015.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fleming D, Rumbaugh K (2017) Approaches to dispersing medical biofilms. Microorganisms 5(2):15

    Article  PubMed Central  Google Scholar 

  73. Gupta K, Liao J, Petrova OE, Cherny KE, Sauer K (2014) Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol Microbiol 92(3):488–506. https://doi.org/10.1111/mmi.12587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Petrova OE, Gupta K, Liao J, Goodwine JS, Sauer K (2017) Divide and conquer: the Pseudomonas aeruginosa two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits. Environ Microbiol 19(5):2005–2024. https://doi.org/10.1111/1462-2920.13719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chambers JR, Liao J, Schurr MJ, Sauer K (2014) BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol Microbiol 92(3):471–487. https://doi.org/10.1111/mmi.12562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liao J, Schurr MJ, Sauer K (2013) The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195:3352–3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194(18):4823–4836. https://doi.org/10.1128/jb.00765-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Poudyal B, Sauer K (2018) The ABC of biofilm drug tolerance: the MerR-like regulator BrlR is an activator of ABC transport systems, with PA1874-77 contributing to the tolerance of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob Agents Chemother 62(2):e01981–e01917. https://doi.org/10.1128/aac.01981-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271. https://doi.org/10.1038/nrmicro.2016.190

    Article  CAS  PubMed  Google Scholar 

  80. Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK, Xu B, Limoli DH, Harrison JJ, Parsek MR, White P, Wozniak DJ (2014) ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog 10(3):e1003984. https://doi.org/10.1371/journal.ppat.1003984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69(2):376–389. https://doi.org/10.1111/j.1365-2958.2008.06281.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baraquet C, Murakami K, Parsek MR, Harwood CS (2012) The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res 40(15):7207–7218. https://doi.org/10.1093/nar/gks384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baraquet C, Harwood CS (2013) Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker a motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci U S A 110(46):18478–18483. https://doi.org/10.1073/pnas.1318972110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Sauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sauer, K. (2020). Cyclic di-GMP and the Regulation of Biofilm Dispersion. In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_31

Download citation

Publish with us

Policies and ethics