Skip to main content

Activation of Bacterial Cellulose Biosynthesis by Cyclic di-GMP

  • Chapter
  • First Online:
  • 862 Accesses

Abstract

Microbes frequently decorate their surfaces with complex carbohydrates to form cell walls, mediate host interactions, or to reduce the efficacies of immune defenses. In a biofilm, bacteria are embedded in a three-dimensional polysaccharide-rich matrix whose formation is often controlled by cyclic di-GMP. In this chapter, I will summarize our current knowledge of the mechanism by which cyclic di-GMP activates bacterial cellulose synthase. Cellulose is a common biofilm component and its biosynthesis is allosterically regulated by cyclic di-GMP. As an exopolysaccharide, cellulose is synthesized and secreted by a membrane-embedded processive glycosyltransferase that contains a C-terminal cyclic di-GMP-binding PilZ domain. Many exopolysaccharide synthases are allosterically regulated by cyclic di-GMP, either by partnering with or being covalently linked to cyclic di-GMP-binding domains. The structural and functional characterizations of Rhodobacter sphaeroides cellulose synthase in resting and activated states provided unique insights into how cyclic di-GMP modulates enzymatic functions. This will be reviewed by discussing (1) biochemical analyses leading to cyclic di-GMP’s discovery and elucidation of its activation mechanism; (2) the structural basis for allosteric activation of cellulose biosynthesis; and (3) additional cyclic di-GMP-regulated control mechanisms of bacterial cellulose synthase complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  Google Scholar 

  2. McNamara JT, Morgan JLW, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:17.11–17.27

    Article  Google Scholar 

  3. Dowd MK, French AD, Reilly PJ (1992) Conformational analysis of the anomeric forms of sophorose, laminarabiose, and cellobiose using MM3. Carbohydr Res 233:15–34

    Article  CAS  Google Scholar 

  4. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  Google Scholar 

  5. McCrate OA, Zhou X, Reichhardt C, Cegelski L (2013) Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol 425(22):4286–4294

    Article  CAS  Google Scholar 

  6. Wolfenden R, Lu X, Young G (1998) Spontaneous hydrolysis of glycosides. J Am Chem Soc 120:6814–6815

    Article  CAS  Google Scholar 

  7. Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci U S A 73(12):4565–4569

    Article  CAS  Google Scholar 

  8. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281

    Article  CAS  Google Scholar 

  9. Römling U, Galperin M, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52

    Article  Google Scholar 

  10. Zhang Z, Kim S, Gaffney BL, Jones RA (2006) Polymorphism of the signaling molecule c-di-GMP. J Am Chem Soc 128(21):7015–7024

    Article  CAS  Google Scholar 

  11. Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281(41):30310–30314

    Article  CAS  Google Scholar 

  12. Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF (2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26(24):5153–5166

    Article  CAS  Google Scholar 

  13. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6

    Article  CAS  Google Scholar 

  14. Morgan J, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186

    Article  CAS  Google Scholar 

  15. Morgan JL, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J (2016) Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531(7594):329–334

    Article  CAS  Google Scholar 

  16. Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci U S A 110(44):17856–17861

    Article  CAS  Google Scholar 

  17. Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134

    Article  CAS  Google Scholar 

  18. Morgan JLW, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21(5):489–496

    Article  CAS  Google Scholar 

  19. Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF (2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26(24):5153–5166

    Article  CAS  Google Scholar 

  20. Brown C, Leijon F, Bulone V (2012) Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nat Protoc 7(9):1634–1650

    Article  CAS  Google Scholar 

  21. Matthysse AG, Thomas DL, White AR (1995) Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177(4):1076–1081

    Article  CAS  Google Scholar 

  22. Matthysse AG, White S, Lightfoot R (1995) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177(4):1069–1075

    Article  CAS  Google Scholar 

  23. Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153(4):205–212

    Article  Google Scholar 

  24. Krasteva PV, Bernal-Bayard J, Travier L, Martin FA, Kaminski PA, Karimova G, Fronzes R, Ghigo JM (2017) Insights into the structure and assembly of a bacterial cellulose secretion system. Nat Commun 8(1):2065

    Article  Google Scholar 

  25. Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L (2018) Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science 359(6373):334–338

    Article  CAS  Google Scholar 

  26. Le Quéré B, Ghigo J-M (2009) BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole. Mol Microbiol 72(3):724–740

    Article  Google Scholar 

  27. Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Romling U, Gomelsky M (2014) GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol 93(3):439–452

    Article  CAS  Google Scholar 

  28. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463

    Article  CAS  Google Scholar 

  29. Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62(4):1014–1034

    Article  CAS  Google Scholar 

  30. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598

    Article  CAS  Google Scholar 

  31. Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, Wilkens S (2018) The 3.5-A CryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase Vo Proton Channel. Mol Cell 69(6):993–1004. e1003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Zimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zimmer, J. (2020). Activation of Bacterial Cellulose Biosynthesis by Cyclic di-GMP. In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_13

Download citation

Publish with us

Policies and ethics