McFarlane, D.C., Glover, K.: Robust Controller Design Procedure Using Normalized Coprime Factor Plant Descriptions. Lecture Notes in Control and Information Sciences, vol. 138. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0043199
CrossRef
MATH
Google Scholar
Rocco, P.: Stability of PID control for industrial robot arms. IEEE Trans. Robot. Autom. 12(4), 606–614 (1996)
CrossRef
Google Scholar
Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation, Mineola (2013)
MATH
Google Scholar
Wen, J.T., Murphy, S.H.: PID control for robot manipulators. Rensselaer Polytechnic Institute (1990)
Google Scholar
Teixeira, R.A., Braga, A.D.P., De Menezes, B.R.: Control of a robotic manipulator using artificial neural networks with on-line adaptation. Neural Process. Lett. 12(1), 19–31 (2000)
CrossRef
Google Scholar
Nesnas, I.A., et al.: CLARAty: challenges and steps toward reusable robotic software. Int. J. Adv. Robot. Syst. 3(1), 5 (2006)
CrossRef
Google Scholar
Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT Press, Cambridge (1998)
MATH
Google Scholar
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)
CrossRef
Google Scholar
Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning, pp. 1889–1897, June 2015
Google Scholar
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)
CrossRef
Google Scholar
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
CrossRef
Google Scholar
Deisenroth, M.P., Neumann, G., Peters, J.: A survey on policy search for robotics. Found. Trends® Robot. 2(1–2), 1–142 (2013)
CrossRef
Google Scholar
Carlson, J., Murphy, R.R.: How UGVs physically fail in the field. IEEE Trans. Robot. 21(3), 423–437 (2005)
CrossRef
Google Scholar
Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503 (2015)
CrossRef
Google Scholar
Nagatani, K., et al.: Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field Robot. 30(1), 44–63 (2013)
CrossRef
Google Scholar
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)
MATH
Google Scholar
Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian processes and reinforcement learning for identification and control of an autonomous blimp. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 742–747. IEEE, April 2007
Google Scholar
Wilson, A., Fern, A., Tadepalli, P.: Incorporating domain models into Bayesian optimization for RL. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 467–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_30
CrossRef
Google Scholar
Engel, Y., Mannor, S., Meir, R.: Bayes meets Bellman: The Gaussian process approach to temporal difference learning. In: Proceedings of the 20th International Conference on Machine Learning, ICML 2003, pp. 154–161 (2003)
Google Scholar
Deisenroth, M.P., Fox, D., Rasmussen, C.E.: Gaussian processes for data-efficient learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37(2), 408–423 (2015)
CrossRef
Google Scholar
Matthews, D.G., et al.: GPflow: a Gaussian process library using TensorFlow. J. Mach. Learn. Res. 18(1), 1299–1304 (2017)
MathSciNet
MATH
Google Scholar
Brockman, G., et al.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)
http://www.ros.org
http://mlg.eng.cam.ac.uk/pilco/
http://www.incompleteideas.net/IncIdeas/BitterLesson.html