Process-Based Quality Management in Care: Adding a Quality Perspective to Pathway Modelling

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11877)


Care pathways (CPs) are used as a tool to organize complex care processes and to foster the quality management in general. However, the quality management potentials have not been sufficiently exploited yet, since the development, documentation, and controlling of quality indicators (QIs) for quality management purposes are not fully integrated to the process standards defined by CPs. To support the integration of a quality perspective in CPs, the paper addresses the questions which and how quality concepts can be integrated into the process documentation in order to support managers, health service providers, and patients. Therefore, we extended the widely accepted modelling language “Business Process Model and Notation” (BPMN) with a quality perspective. The conceptualization is grounded on a systematic literature review on (quality) indicator modelling. Together with previous work on the conceptualization of QIs in health care, it provided the basis for a comprehensive domain requirements analysis. Following a design-oriented research approach, the requirements were evaluated and used to design a BPMN extension by implementing the quality indicator enhancements as BPMN meta model extension. All design decisions were evaluated in a feedback workshop with a domain expert experienced in quality management and certification of cancer centres on national and international level. The approach is demonstrated with an example from stroke care. The proposed language extension provides a tool to be used for the governance of care processes based on QIs and for the implementation of a more real-time, pathway-based quality management in health care.


Care pathways Pathway modelling Quality management Integrated care Systematic literature review Conceptual modelling BPMN extension 



The work for this paper was funded by the European Social Fund (ESF) and the Free State of Saxony (Grant no. 100310385). We thank PD Dr. med. Simone Wesselmann, German Cancer Society for her valuable feedback from the domain of integrated cancer care and Uwe Helbig for providing us with his experience and knowledge with regard to integrated stroke care.


  1. 1.
    Schrijvers, G., van Hoorn, A., Huiskes, N.: The care pathway: concepts and theories: an introduction. Int. J. Integr. Care 12(Special Edition Integrated Care Pathways), e192 (2012)Google Scholar
  2. 2.
    Antunes, V., Moreira, J.: Approaches to developing integrated care in Europe: a systematic literature review. J. Manage. Mark. Healthc. 4(2), 129–135 (2011)Google Scholar
  3. 3.
    Nolte, E., Pitchforth, E.: What is the evidence on the economic impacts of integrated care? World Health Organization (2014)Google Scholar
  4. 4.
    Vanhaecht, K.: The Impact of Clinical Pathways on the Organisation of Care Processes. Katholieke Universiteit Leuven, Leuven (2007)Google Scholar
  5. 5.
    Sánchez, E., Letona, J., González, R., García, M., Darpón, J., Garay, J.: A descriptive study of the implementation of the EFQM excellence model and underlying tools in the Basque Health Service. Int. J. Qual. Health Care 18(1), 58–65 (2006)CrossRefGoogle Scholar
  6. 6.
    Stoimenova, A., Stoilova, A., Petrova, G.: ISO 9001 certification for hospitals in Bulgaria: does it help service? Biotechnol. Biotechnol. Equip. 28(2), 372–378 (2014)CrossRefGoogle Scholar
  7. 7.
    Minkman, M., Ahaus, K., Fabbricotti, I., Nabitz, U., Huijsman, R.: A quality management model for integrated care: results of a Delphi and concept mapping study. Int. J. Qual. Health Care 21(1), 66–75 (2009)CrossRefGoogle Scholar
  8. 8.
    Burwitz, M., Schlieter, H., Esswein, W.: Modeling clinical pathways - design and application of a domain-specific modeling language. In: Proceedings of the 11th International Conference on Wirtschaftsinformatik, Leipzig, pp. 1325–1339 (2013)Google Scholar
  9. 9.
    Livieri, B., Cagno, P.D., Bochicchio, M.: A bibliometric analysis and review on performance modeling literature. Complex Syst. Inf. Model. Q. 2, 56–71 (2015)Google Scholar
  10. 10.
    Richter, P., Burwitz, M., Esswein, W.: Conceptual considerations on the integration of quality indicators into clinical pathways. Stud. Health Technol. Inf. 228, 38–42 (2016)Google Scholar
  11. 11.
    Österle, H., et al.: Memorandum on design-oriented information systems research. Eur. J. Inf. Syst. 20(1), 7–10 (2011)CrossRefGoogle Scholar
  12. 12.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manage. Inf. Syst. 24(3), 45–77 (2007)CrossRefGoogle Scholar
  13. 13.
    Peffers, K., Tuunanen, T., Niehaves, B.: Design science research genres: introduction to the special issue on exemplars and criteria for applicable design science research. Eur. J. Inf. Syst. 27(2), 129–139 (2018)CrossRefGoogle Scholar
  14. 14.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. Manage. Inf. Syst. Q. 28(1), 75–106 (2004)CrossRefGoogle Scholar
  15. 15.
    Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv. 37(4), 316–344 (2005)CrossRefGoogle Scholar
  16. 16.
    Richter, P.: Bringing care quality to life: towards quality indicator-driven pathway modelling for integrated care networks. In: Proceedings of the 27th European Conference on Information Systems, Stockholm-Uppsala (2019)Google Scholar
  17. 17.
    Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 87–92 (2007)Google Scholar
  18. 18.
    Braun, R., Schlieter, H.: Requirements-based development of BPMN extensions: the case of clinical pathways. In: Proceedings of the IEEE 1st International Workshop on the Interrelations Between Requirements Engineering and Business Process Management (REBPM), pp. 39–44 (2014)Google Scholar
  19. 19.
    vom Brocke, J. et al.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: Proceedings of the 17th European Conference of Information Systems, Verona (2009)Google Scholar
  20. 20.
    McLellan, A.T., Chalk, M., Bartlett, J.: Outcomes, performance, and quality: what’s the difference? J. Subst. Abuse Treat. 32(4), 331–340 (2007)CrossRefGoogle Scholar
  21. 21.
    Popova, V., Sharpanskykh, A.: Formal modelling of organisational goals based on performance indicators. Data Knowl. Eng. 70(4), 335–364 (2011)CrossRefGoogle Scholar
  22. 22.
    Strecker, S., Frank, U., Heise, D., Kattenstroth, H.: MetricM: a modeling method in support of the reflective design and use of performance measurement systems. IseB 10(2), 241–276 (2012)CrossRefGoogle Scholar
  23. 23.
    Staron, M., Meding, W., Niesel, K., Abran, A.: A Key Performance Indicator Quality Model and Its Industrial Evaluation. IEEE, New York (2016)CrossRefGoogle Scholar
  24. 24.
    Maté, A., Trujillo, J., Mylopoulos, J.: Key performance indicator elicitation and selection through conceptual modelling. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 73–80. Springer, Cham (2016). Scholar
  25. 25.
    Amor, E., Ghannouchi, S.A.: Toward an ontology-based model of key performance indicators for business process improvement. In: IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 148–153. IEEE, New York (2017)Google Scholar
  26. 26.
    Ghahremanlou, L., Magee, L., Thom, J.A.: Using ontology design patterns to represent sustainability indicator sets. In: Dragoni, M., Poveda-Villalón, M., Jimenez-Ruiz, E. (eds.) OWLED/ORE -2016. LNCS, vol. 10161, pp. 70–81. Springer, Cham (2017). Scholar
  27. 27.
    del-Río-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Defining process performance indicators: an ontological approach. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 555–572. Springer, Heidelberg (2010). Scholar
  28. 28.
    de Alencar Silva, P., Weigand, H.: Enterprise monitoring ontology. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 132–146. Springer, Heidelberg (2011). Scholar
  29. 29.
    Zeise, N.: Modellierung von Kennzahlensystemen mit BPMN. In: Software Engineering (2010)Google Scholar
  30. 30.
    Ronaghi, F.: A modeling method for integrated performance management. In: Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA 2005), pp. 972–976 (2005)Google Scholar
  31. 31.
    Pourshahid, A., et al.: Business process management with the user requirements notation. Electron. Commer. Res. 9(4), 269–316 (2009)CrossRefGoogle Scholar
  32. 32.
    Rojas, L.F.C., Jaramillo, C.M.Z.: Executable pre-conceptual schemas for representing key performance indicators. In: Proceedings of the IEEE Computing Colombian Conference (8CCC) (2013)Google Scholar
  33. 33.
    Braun, R., Schlieter, H., Burwitz, M., Esswein, W.: BPMN4CP revised - extending BPMN for multiperspective modeling of clinical pathways. In: Proceedings of the 49th Hawaii International Conference on System Sciences, Koloa (2016)Google Scholar
  34. 34.
    Jussupova-Mariethoz, Y., Probst, A.-R.: Business concepts ontology for an enterprise performance and competences monitoring. Comput. Ind. 58(2), 118–129 (2007)CrossRefGoogle Scholar
  35. 35.
    Pourshahid, A., Amyot, D., Chen, P., Weiss, M., Forster, A.J.: Business process monitoring and alignment: an approach based on the user requirements notation and business intelligence tools. In: WER (2007)Google Scholar
  36. 36.
    Zerbato, F., Oliboni, B., Combi, C., Campos, M., Juarez, J.: BPMN-based representation and comparison of clinical pathways for catheter-related bloodstream infections. In: Proceedings of the International Conference on Healthcare Informatics, pp. 346–355 (2015)Google Scholar
  37. 37.
    Scheuerlein, H., et al.: New methods for clinical pathways-business process modeling notation (BPMN) and tangible business process modeling (t.BPM). Langenbeck’s Arch. Surg. 397(5), 755–761 (2012)CrossRefGoogle Scholar
  38. 38.
    Braun, R., Schlieter, H., Burwitz, M., Esswein, W.: BPMN4CP: design and implementation of a BPMN extension for clinical pathways. In: Proceedings of the IEEE International Conference of Bioinformatics and Biomedicine, pp. 9–16 (2014)Google Scholar
  39. 39.
    Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Extending BPMN 2.0: method and tool support. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 59–73. Springer, Heidelberg (2011). Scholar
  40. 40.
    Richter, P., Schlieter, H.: Understanding patient pathways in the context of integrated health care services - implications from a scoping review. In: Proceedings of the 14th International Conference on Wirtschaftsinformatik, Siegen, pp. 997–1011 (2019)Google Scholar
  41. 41.
    Braun, R., Benedict, M., Wendler, H., Esswein, W.: Proposal for requirements driven design science research. In: Donnellan, B., Helfert, M., Kenneally, J., VanderMeer, D., Rothenberger, M., Winter, R. (eds.) DESRIST 2015. LNCS, vol. 9073, pp. 135–151. Springer, Cham (2015). Scholar
  42. 42.
    Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects and future research challenges. Softw. Syst. Model. 13(3), 941–962 (2014)CrossRefGoogle Scholar
  43. 43.
    Braun, R., Esswein, W.: A generic framework for modifying and extending enterprise modeling languages. In: Proceedings of the 17th International Conference on Enterprise Information Systems, Barcelona (2015)Google Scholar
  44. 44.
    Schlieter, H., Stark, J., Burwitz, M., Braun, R.: Terminology for evolving design artifacts. In: Proceedings of the 14th International Conference on Wirtschaftsinformatik, Siegen (2019)Google Scholar
  45. 45.
    Mainz, J.: Defining and classifying clinical indicators for quality improvement. Int. J. Qual. Health Care 15(6), 523–530 (2003)CrossRefGoogle Scholar
  46. 46.
    Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In: Proceedings of 2nd International Workshop on Semantic Web Enabled Software Engineering (SWESE 2006) Held at the 5th International Semantic Web Conference (ISWC) (2006)Google Scholar
  47. 47.
    Uschold, M.: Building ontologies: towards a unified methodology. In: Proceedings of the 16th Annual Conference of the British Computer Society Specialist Group on Expert Systems (1996)Google Scholar
  48. 48.
    W3C: OWL 2 web ontology language - document overview; W3C recommendation. (2012). Accessed 19 Nov 2018
  49. 49.
    Donabedian, A.: The quality of care: how can it be assessed? J. Am. Med. Assoc. 260(12), 1743–1748 (1988)CrossRefGoogle Scholar
  50. 50.
    Reiter, A., et al.: QUALIFY: Ein Instrument zur Bewertung von Qualitätsindikatoren, Zeitschrift für ärztliche Fortbildung und Qualität im Gesundheitswesen. Ger. J. Qual. Health Care 101(10), 683–688 (2008)Google Scholar
  51. 51.
    Woolf, S.H., Grol, R., Hutchinson, A., Eccles, M., Grimshaw, J.: Potential benefits, limitations, and harms of clinical guidelines. BMJ 318(7182), 527–530 (1999)CrossRefGoogle Scholar
  52. 52.
    Frank, U., Heise, D., Kattenstroth, H., Schauer, H.: Designing and utilising business indicator systems within enterprise models-outline of a method. In: Proceedings of Modellierung betrieblicher Informationssysteme (MobIS), Saarbrücken (2008)Google Scholar
  53. 53.
    Khare, S.R., et al.: Quality indicators in the management of bladder cancer: a modified Delphi study. Urol. Oncol. 35(6), 328–334 (2017). Seminars and Original InvestigationsCrossRefGoogle Scholar
  54. 54.
    Ludt, S., et al.: Evaluating the quality of colorectal cancer care across the interface of healthcare sectors. PLoS ONE 8(5), e60947 (2013)CrossRefGoogle Scholar
  55. 55.
    Object Management Group: OMG BPMN Version 2.0. (2011). Accessed 01 July 2019
  56. 56.
    Busch, M.A., Kuhnert, R.: 12-Month prevalence of stroke or chronic consequences of stroke in Germany. J. Health Monit. 2(1), 64–69 (2017)Google Scholar
  57. 57.
    Barlinn, J., et al.: Koordinierte Schlaganfallnachsorge durch Case Management auf der Basis eines standardisierten Behandlungspfades. Nervenarzt 87(8), 860–869 (2016)CrossRefGoogle Scholar
  58. 58.
    SOS-NET. Das Neurovaskuläre Netzwerk Ostsachsen und Südbrandenburg: SOS-Care - Hilfe nach Schlaganfall. Akuttherapie bis Nachsorge. Accessed 25 Feb 2019
  59. 59.
    Morgan, D.L.: Focus groups. Ann. Rev. Sociol. 22(1), 129–152 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Business and Economics, Chair of Wirtschaftsinformatik, esp. Systems DevelopmentTechnische Universität DresdenDresdenGermany

Personalised recommendations