Advertisement

Zooplankton in the Polar Night

Chapter
Part of the Advances in Polar Ecology book series (AVPE, volume 4)

Abstract

Pelagic communities play a key role in Arctic ecosystems. Although zooplankton occupy several different trophic levels in the food chain, their primary niche is often considered that of a link between pelagic and ice-associated primary production on one side and higher trophic levels on the other. In fact, most of the biological energy (organic carbon) ending up in top predators such as seabirds, fish and marine mammals have been funnelled through one or more zooplankton species. As such, zooplankton ecology is often viewed and understood in relation to primary production regimes. However, recent research has also showed that processes occurring in the zooplankton community during winter are crucial for our understanding of Polar Night ecology. As a group, they are active throughout the entire year, they conduct various forms of vertical migration in relation to both the moon and solar background illumination and some species utilize the Polar Night for reproduction. Evidence of reproduction among short-lived omnivorous zooplankton species during the Polar Night suggests that production is sustained by feeding opportunistically throughout winter and Polar Night and that life history strategies are tuned to support fast turnover rates and not on building up large lipid reserves. This chapter provides an overview of the main zooplankton taxa inhabiting Arctic waters during the Polar Night and describes the main processes typical for zooplankton taxa during the Polar Night.

Keywords

Zooplankton Species composition Overwintering strategies Vertical migration Seasonal Diel Reproduction 

References

  1. Albers CS, Kattner G, Hagen W (1996) The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar Chem 55:347–358CrossRefGoogle Scholar
  2. Arnkværn G, Daase M, Eiane K (2005) Dynamics of coexisting Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus populations in a high-Arctic fjord. Polar Biol 28:528–538CrossRefGoogle Scholar
  3. Ashjian CJ, Campbell RG, Welch HE, Butler M, Van Keuren D (2003) Annual cycle in abundance, distribution, and size in relation to hydrography of important copepod species in the western Arctic Ocean. Deep-Sea Res Part I 50:1235–1261CrossRefGoogle Scholar
  4. Auel H, Hagen W (2002) Mesozooplankton community structure, abundance and biomass in the Central Arctic Ocean. Mar Biol 140:1013–1021CrossRefGoogle Scholar
  5. Auel H, Werner I (2003) Feeding, respiration and life history of the hyperiid amphipod Themisto libellula in the Arctic marginal ice zone of the Greenland Sea. J Exp Mar Biol Ecol 296:183–197CrossRefGoogle Scholar
  6. Bailey A (2010) Lipids and diapause in Calanus spp. in a high-Arctic fjord: state-dependent strategies? Master Thesis, University of TromsøGoogle Scholar
  7. Båmstedt U, Ervik A (1984) Local variations in size and activity among Calanus finmarchicus and Metridia longa (Copepoda, Calanoida) overwintering on the west-coast of Norway. J Plankton Res 6:843–857CrossRefGoogle Scholar
  8. Båmstedt U, Tande K (1988) Physiological responses of Calanus finmarchicus and Metridia longa (Copepoda: Calanoida) during the winter-spring transition. Mar Biol 99:31–38.  https://doi.org/10.1007/bf00644974CrossRefGoogle Scholar
  9. Bandara K, Varpe Ø, Søreide JE, Wallenschus J, Berge J, Eiane K (2016) Seasonal vertical strategies in a high-Arctic coastal zooplankton community. Mar Ecol Prog Ser 555:49–64CrossRefGoogle Scholar
  10. Basedow SL, Sundfjord A, von Appen W-J, Halvorsen E, Kwasniewski S, Reigstad M (2018) Seasonal variation in transport of zooplankton into the Arctic Basin through the Atlantic gateway, Fram Strait. Front Mar Sci 5.  https://doi.org/10.3389/fmars.2018.00194
  11. Baumgartner MF, Tarrant AM (2017) The physiology and ecology of diapause in marine copepods. Annu Rev Mar Sci 9:387–411.  https://doi.org/10.1146/annurev-marine-010816-060505CrossRefGoogle Scholar
  12. Berge J, Cottier F, Last KS, Varpe Ø, Leu E, Søreide J, Eiane K, Falk-Petersen S, Willis K, Nygård H, Vogedes D, Griffiths C, Johnsen G, Lorentzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72.  https://doi.org/10.1098/rsbl.2008.0484CrossRefPubMedPubMedCentralGoogle Scholar
  13. Berge J, Cottier F, Varpe Ø, Renaud PE, Falk-Petersen S, Kwasniewski S, Griffiths C, Søreide JE, Johnsen G, Aubert A, Bjaerke O, Hovinen J, Jung-Madsen S, Tveit M, Majaneva S (2014) Arctic complexity: a case study on diel vertical migration of zooplankton. J Plankton Res 36:1279–1297.  https://doi.org/10.1093/plankt/fbu059CrossRefPubMedPubMedCentralGoogle Scholar
  14. Berge J, Daase M, Renaud Paul E, Ambrose William G Jr, Darnis G, Last Kim S, Leu E, Cohen Jonathan H, Johnsen G, Moline Mark A, Cottier F, Varpe Ø, Shunatova N, Bałazy P, Morata N, Massabuau J-C, Falk-Petersen S, Kosobokova K, Hoppe Clara JM, Węsławski Jan M, Kukliński P, Legeżyńska J, Nikishina D, Cusa M, Kędra M, Włodarska-Kowalczuk M, Vogedes D, Camus L, Tran D, Michaud E, Gabrielsen Tove M, Granovitch A, Gonchar A, Krapp R, Callesen Trine A (2015) Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr Biol 25:2555–2561.  https://doi.org/10.1016/j.cub.2015.08.024CrossRefPubMedPubMedCentralGoogle Scholar
  15. Berkes F (1976) Ecology of euphausiids in the Gulf of St. Lawrence. J Fish Res Board Can 33:1894–1905.  https://doi.org/10.1139/f76-242CrossRefGoogle Scholar
  16. Blachowiak-Samolyk K, Kwasniewski S, Richardson K, Dmoch K, Hansen E, Hop H, Falk-Petersen S, Mouritsen LT (2006) Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun. Mar Ecol Prog Ser 308:101–116CrossRefGoogle Scholar
  17. Błachowiak-Samołyk K, Wiktor JM, Hegseth EN, Wold A, Falk-Petersen S, Kubiszyn AM (2015) Winter Tales: the dark side of planktonic life. Polar Biol 38:23–36.  https://doi.org/10.1007/s00300-014-1597-4CrossRefGoogle Scholar
  18. Blachowiak-Samolyk K, Zwolicki A, Webster CN, Boehnke R, Wichorowski M, Wold A, Bielecka L (2017) Characterisation of large zooplankton sampled with two different gears during midwinter in Rijpfjorden, Svalbard. Pol Polar Res 38:459–484Google Scholar
  19. Boer M, Gannefors C, Kattner G, Graeve M, Hop H, Falk-Petersen S (2005) The Arctic pteropod Clione limacina: seasonal lipid dynamics and life-strategy. Mar Biol 147:707–717CrossRefGoogle Scholar
  20. Boer M, Graeve M, Kattner G (2007) Exceptional long-term starvation ability and sites of lipid storage of the Arctic pteropod Clione limacina. Polar Biol 30:571–580CrossRefGoogle Scholar
  21. Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, van der Loeff’o MR, Sarin M, Steinberg DK, Trull T (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65:345–416CrossRefGoogle Scholar
  22. Campbell RW, Dower JF (2003) Role of lipids in the maintenance of neutral buoyancy by zooplankton. Mar Ecol Prog Ser 263:93–99CrossRefGoogle Scholar
  23. Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. Wadsworth, Belmont, CAGoogle Scholar
  24. Clark KAJ, Brierley AS, Pond DW (2012) Composition of wax esters is linked to diapause behavior of Calanus finmarchicus in a sea loch environment. Limnol Oceanogr 57:65–75.  https://doi.org/10.4319/lo.2012.57.1.0065CrossRefGoogle Scholar
  25. Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Ann Rev 21:341–453Google Scholar
  26. Cleary AC, Søreide JE, Freese D, Niehoff B, Gabrielsen TM (2017) Feeding by Calanus glacialis in a high arctic fjord: potential seasonal importance of alternative prey. ICES J Mar Sci 74:1937–1946.  https://doi.org/10.1093/icesjms/fsx106CrossRefGoogle Scholar
  27. Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167:127–142CrossRefGoogle Scholar
  28. Conover RJ, Gustavson KR (1999) Sources of urea in Arctic Seas: Zooplankton metabolism. Mar Ecol Prog Ser 179:41–54CrossRefGoogle Scholar
  29. Conover RJ, Huntley M (1991) Copepods in ice-covered seas- distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. J Mar Res 2:1–41Google Scholar
  30. Conover RJ, Lalli CM (1972) Feeding and growth in Clione limacina (Phipps), a pteropod mollusc. J Exp Mar Biol Ecol 9:279–302.  https://doi.org/10.1016/0022-0981(72)90038-XCrossRefGoogle Scholar
  31. Conover RJ, Siferd TD (1993) Dark-season survival strategies of coastal zone zooplankton in the Canadian Arctic. Arctic 46:303–311CrossRefGoogle Scholar
  32. Cottier FR, Tarling GA, Wold A, Falk-Petersen S (2006) Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol Oceanogr 51:2586–2599CrossRefGoogle Scholar
  33. Cronin HA, Cohen JH, Berge J, Johnsen G, Moline MA (2016) Bioluminescence as an ecological factor during high Arctic polar night. Sci Rep 6:36374.  https://doi.org/10.1038/srep36374. http://www.nature.com/articles/srep36374#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  34. Daase M, Eiane K, Aksnes DL, Vogedes D (2008) Vertical distribution of Calanus spp. and Metridia longa at four Arctic locations. Mar Biol Res 4:193–207.  https://doi.org/10.1080/17451000801907948CrossRefGoogle Scholar
  35. Daase M, Falk-Petersen S, Varpe Ø, Darnis G, Søreide JE, Wold A, Leu E, Berge J, Philippe B, Fortier L (2013) Timing of reproductive events in the marine copepod Calanus glacialis: a pan-Arctic perspective. Can J Fish Aquat Sci 70:871–884.  https://doi.org/10.1139/cjfas-2012-0401CrossRefGoogle Scholar
  36. Daase M, Varpe Ø, Falk-Petersen S (2014) Non-consumptive mortality in copepods: occurrence of Calanus spp. carcasses in the Arctic Ocean during winter. J Plankton Res 36:129–144.  https://doi.org/10.1093/plankt/fbt079CrossRefGoogle Scholar
  37. Daase M, Kosobokova K, Last KS, Cohen JH, Choquet M, Hatlebakk M, Søreide JE (2018) New insights into the biology of Calanus spp. (Copepoda) males in the Arctic. Mar Ecol Prog Ser 607:53–69.  https://doi.org/10.3354/meps12788CrossRefGoogle Scholar
  38. Dahl TM, Falk-Petersen S, Gabrielsen GW, Sargent JR, Hop H, Millar RM (2003) Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar: a trophic study from an Arctic fjord. Mar Ecol Prog Ser 256:257–269CrossRefGoogle Scholar
  39. Dale K, Falk-Petersen S, Hop H, Fevolden SE (2006) Population dynamics and body composition of the Arctic hyperiid amphipod Themisto libellula in Svalbard fjords. Polar Biol 29:1063–1070CrossRefGoogle Scholar
  40. Dalpadado P (2002) Inter-specific variations in distribution, abundance and possible life-cycle patterns of Themisto spp. (Amphipoda) in the Barents Sea. Polar Biol 25:656–666CrossRefGoogle Scholar
  41. Dalpadado P, Ikeda T (1989a) Some observations on molting, growth and maturation of krill (Thysanoessa inermis) from the Barents Sea. J Plankton Res 11:133–139CrossRefGoogle Scholar
  42. Dalpadado P, Ikeda T (1989b) Some observations on moulting, growth and maturation of krill (Thysanoessa inermis) from the Barents Sea. J Plankton Res 11:133–139.  https://doi.org/10.1093/plankt/11.1.133CrossRefGoogle Scholar
  43. Dalpadado P, Skjoldal HR (1996) Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar Ecol Prog Ser 144:175–183CrossRefGoogle Scholar
  44. Dalpadado P, Borkner N, Skjodal R (1994) Distribution and life history of Themisto (amphipoda) spp., North of 73°N in the Barents Sea. Fisken og Havet:12Google Scholar
  45. Dalpadado P, Borkner N, Bogstad B, Mehl S (2001) Distribution of Themisto (Amphipoda) spp in the Barents Sea and predator-prey interactions. ICES J Mar Sci 58:876–895CrossRefGoogle Scholar
  46. Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep-Sea Res Part II 55:2266–2274.  https://doi.org/10.1016/j.dsr2.2008.05.016CrossRefGoogle Scholar
  47. Dam HG, Roman MR, Youngbluth MJ (1995) Downward export of respiratory carbon and dissolved inorganic nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep-Sea Res Part I 42:1187–1197.  https://doi.org/10.1016/0967-0637(95)00048-BCrossRefGoogle Scholar
  48. Darnis G, Fortier L (2012) Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean). J Geophys Res 117:C04013.  https://doi.org/10.1029/2011jc007374CrossRefGoogle Scholar
  49. Darnis G, Fortier L (2014) Temperature, food and the seasonal vertical migration of key arctic copepods in the thermally stratified Amundsen Gulf (Beaufort Sea, Arctic Ocean). J Plankton Res 36:1092–1108.  https://doi.org/10.1093/plankt/fbu035CrossRefGoogle Scholar
  50. Darnis G, Robert D, Pomerleau C, Link H, Archambault P, Nelson RJ, Geoffroy M, Tremblay JE, Lovejoy C, Ferguson SH, Hunt BPV, Fortier L (2012) Current state and trends in Canadian Arctic marine ecosystems: II. Heterotrophic food web, pelagic-benthic coupling, and biodiversity. Clim Chang 115:179–205.  https://doi.org/10.1007/s10584-012-0483-8CrossRefGoogle Scholar
  51. Darnis G, Hobbs L, Geoffroy M, Grenvald J, Renaud PE, Berge J, Cottier F, Kristiansen S, Daase M, Søreide JE, Wold A, Morata N, Gabrielsen TM (2017) From polar night to midnight sun: diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol Oceanogr 62:1586–1605.  https://doi.org/10.1002/lno.10519CrossRefGoogle Scholar
  52. Darnis G, Wold A, Falk-Petersen S, Graeve M, Fortier L (2019) Could offspring predation offset the successful reproduction of the arctic copepod Calanus hyperboreus under reduced sea-ice cover conditions? Prog Oceanogr 170:107–118.  https://doi.org/10.1016/j.pocean.2018.11.004CrossRefGoogle Scholar
  53. Dawson JK (1978) Vertical distribution of Calanus hyperboreus in Central Arctic Ocean. Limnol Oceanogr 23:950–957CrossRefGoogle Scholar
  54. Dezutter T, Lalande C, Dufresne C, Darnis G, Fortier L (2019) Mismatch between microalgae and herbivorous copepods due to the record sea ice minimum extent of 2012 and the late sea ice break-up of 2013 in the Beaufort Sea. Prog Oceanogr 173:66–77.  https://doi.org/10.1016/j.pocean.2019.02.008CrossRefGoogle Scholar
  55. Digby PSB (1954) The biology of the marine planktonic copepods of Scoresby-Sound, East Greenland. J Anim Ecol 23:298–338CrossRefGoogle Scholar
  56. Dunbar MJ (1962) The life cycle of Sagitta elegans in Arctic and Subarctic Seas, and the modifying effects of hydrographic differences in the environment. J Mar Res 20:76–91Google Scholar
  57. Falkenhaug T (1991) Prey composition and feeding rate of Sagitta elegans var Arctica (Chaetognatha) in the Barents Sea in early summer. Polar Res 10:487–506CrossRefGoogle Scholar
  58. Falk-Petersen S (1981) Ecological investigation on the zooplankton community of Balsfjorden, Northern Norway: seasonal changes in body weight and the main biochemical composition of Thysanoessa inermis (Krøyer), T. raschii (M. Sars) and Meganyctiphanes norvegica (M. Sars) in relation to environmental factors. J Exp Mar Biol Ecol 49:103–120CrossRefGoogle Scholar
  59. Falk-Petersen S (1985) Growth of the euphausiids Thysanoessa inermis, Thysanoessa raschii, and Meganyctiphanes norvegica in a subarctic fjord, North Norway. Can J Fish Aquat Sci 42:14–22Google Scholar
  60. Falk-Petersen S, Hopkins CCE (1981) Ecological investigations on the zooplankton community of Balsfjorden, northern Norway: population dynamic of the euphausiids Thysanoessa inermis (Krøyer), Thysanoessa raschii (M. Sars) and Meganyctiphanes norvegica (M. Sars) in 1976 and 1977. J Plankton Res 3:177–191CrossRefGoogle Scholar
  61. Falk-Petersen S, Sargent J, Tande KS (1987) Lipid composition of zooplankton in relation to the Sub-Arctic food web. Polar Biol 8:115–120CrossRefGoogle Scholar
  62. Falk-Petersen S, Sargent JR, Hopkins CCE (1990) Trophic relationships in the pelagic arctic food web. In: Barnes M, Gibson RN (eds) Trophic relationships in the marine environment. Scotland University Press, Aberdeen, pp 315–333Google Scholar
  63. Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent J (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191CrossRefGoogle Scholar
  64. Falk-Petersen S, Sargent JR, Kwasniewski S, Gulliksen B, Millar RM (2001) Lipids and fatty acids in Clione limacina and Limacina helicina in Svalbard waters and the Arctic Ocean: trophic implications. Polar Biol 24:163–170CrossRefGoogle Scholar
  65. Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar RM (2002) Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194CrossRefGoogle Scholar
  66. Falk-Petersen S, Leu E, Berge J, Kwasniewski S, Nygård H, Rostad A, Keskinen E, Thormar J, von Quillfeldt C, Wold A, Gulliksen B (2008) Vertical migration in high Arctic waters during autumn 2004. Deep-Sea Res Part II 55:2275–2284.  https://doi.org/10.1016/j.dsr2.2008.05.010CrossRefGoogle Scholar
  67. Falk-Petersen S, Mayzaud P, Kattner G, Sargent J (2009) Lipids and life strategy of Arctic Calanus. Mar Biol Res 5:18–39.  https://doi.org/10.1080/17451000802512267CrossRefGoogle Scholar
  68. Fischer J, Visbeck M (1993) Seasonal-variation of the daily zooplankton migration in the Greenland Sea. Deep-Sea Res Part I 40:1547–1557CrossRefGoogle Scholar
  69. Forest A, Sampei M, Hattori H, Makabe R, Sasaki H, Fukuchi M, Wassmann P, Fortier L (2007) Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): physical and biological forcing of shelf-basin exchanges. J Mar Syst 68:39–54.  https://doi.org/10.1016/j.jmarsys.2006.10.008CrossRefGoogle Scholar
  70. Forest A, Galindo V, Darnis G, Pineault S, Lalande C, Tremblay JE, Fortier L (2011a) Carbon biomass, elemental ratios (C:N) and stable isotopic composition (delta C-13, delta N-15) of dominant calanoid copepods during the winter-to-summer transition in the Amundsen Gulf (Arctic Ocean). J Plankton Res 33:161–178.  https://doi.org/10.1093/plankt/fbq103CrossRefGoogle Scholar
  71. Forest A, Tremblay J-É, Gratton Y, Martin J, Gagnon J, Darnis G, Sampei M, Fortier L, Ardyna M, Gosselin M, Hattori H, Nguyen D, Maranger R, Vaqué D, Marrasé C, Pedrós-Alió C, Sallon A, Michel C, Kellogg C, Deming J, Shadwick E, Thomas H, Link H, Archambault P, Piepenburg D (2011b) Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr 91:410–436.  https://doi.org/10.1016/j.pocean.2011.05.002CrossRefGoogle Scholar
  72. Fortier M, Fortier L, Hattori H, Saito H, Legendre L (2001) Visual predators and the diel vertical migration of copepods under Arctic Sea ice during the midnight sun. J Plankton Res 23:1263–1278CrossRefGoogle Scholar
  73. Freese D, Niehoff B, Søreide JE, Sartoris FJ (2015) Seasonal patterns in extracellular ion concentrations and pH of the Arctic copepod Calanus glacialis. Limnol Oceanogr 60:2121–2129.  https://doi.org/10.1002/lno.10158CrossRefGoogle Scholar
  74. Freese D, Søreide JE, Niehoff B (2016) A year-round study on digestive enzymes in the Arctic copepod Calanus glacialis: implications for its capability to adjust to changing environmental conditions. Polar Biol 39:2241–2252CrossRefGoogle Scholar
  75. Fulmer JH, Bollens SM (2005) Responses of the chaetognath, Sagitta elegans, and larval Pacific hake, Merluccius productus, to spring diatom and copepod blooms in a temperate fjord (Dabob Bay, Washington). Prog Oceanogr 67:442–461CrossRefGoogle Scholar
  76. Gannefors C, Boer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S (2005) The Arctic Sea butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177CrossRefGoogle Scholar
  77. Geinrikh AK, Kosobokova K, Rudyakov YA (1983) Seasonal variations in the vertical distribution of some prolific copepods of the Arctic Basin. Canadian translation of fisheries and aquatic. Science 4925:1–22Google Scholar
  78. Gilmer RW, Harbison GR (1991) Diet of Limacina helicina (Gastropoda: Thecosomata) in Arctic waters in midsummer. Mar Ecol Prog Ser 77:125–134CrossRefGoogle Scholar
  79. Gliwicz MZ (1986) Predation and the evolution of vertical migration in zooplankton. Nature 320:746–748CrossRefGoogle Scholar
  80. Graeve M, Lundberg M, Boer M, Kattner G, Hop H, Falk-Petersen S (2008) The fate of dietary lipids in the Arctic ctenophore Mertensia ovum (Fabricius 1780). Mar Biol 153:643–651.  https://doi.org/10.1007/s00227-007-0837-3CrossRefGoogle Scholar
  81. Grenvald JC, Callesen TA, Daase M, Hobbs L, Darnis G, Renaud PE, Cottier F, Nielsen TG, Berge J (2016) Plankton community composition and vertical migration during polar night in Kongsfjorden. Polar Biol 39:1879–1895.  https://doi.org/10.1007/s00300-016-2015-xCrossRefGoogle Scholar
  82. Grigor JJ, Søreide JE, Varpe Ø (2014) Seasonal ecology and life-history strategy of the high-latitude predatory zooplankter Parasagitta elegans. Mar Ecol Prog Ser 499:77–88.  https://doi.org/10.3354/meps10676CrossRefGoogle Scholar
  83. Grigor JJ, Marais AE, Falk-Petersen S, Varpe Ø (2015) Polar night ecology of a pelagic predator, the chaetognath Parasagitta elegans. Polar Biol 38:87–98.  https://doi.org/10.1007/s00300-014-1577-8CrossRefGoogle Scholar
  84. Häfker NS, Teschke M, Last KS, Pond DW, Huppe L, Meyer B (2018) Calanus finmarchicus seasonal cycle and diapause in relation to gene expression, physiology, and endogenous clocks. Limnol Oceanogr 63:2815–2838.  https://doi.org/10.1002/lno.11011CrossRefGoogle Scholar
  85. Hagen W (1999) Reproductive strategies and energetic adaptations of polar zooplankton. Invertebr Reprod Dev 36:25–34CrossRefGoogle Scholar
  86. Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104:313–326PubMedCrossRefPubMedCentralGoogle Scholar
  87. Hagen W, Kattner G, Terbruggen A, Van Vleet ES (2001) Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar Biol 139:95–104CrossRefGoogle Scholar
  88. Halvorsen E (2015) Significance of lipid storage levels for reproductive output in the Arctic copepod Calanus hyperboreus. Mar Ecol Prog Ser 540:259–265CrossRefGoogle Scholar
  89. Haug T, Nilssen KT, Lindblom L, Lindström U (2007) Diets of hooded seals (Cystophora cristata) in coastal waters and drift ice waters along the east coast of Greenland. Mar Biol Res 3:123–133CrossRefGoogle Scholar
  90. Hays GC (2003) A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503:163–170CrossRefGoogle Scholar
  91. Hays GC, Kennedy H, Frost BW (2001) Individual variability in diel vertical migration of a marine copepod: why some individuals remain at depth when others migrate. Limnol Oceanogr 46:2050–2054CrossRefGoogle Scholar
  92. Henderson RJ, Sargent JR, Falk-Petersen S (1981) Lipogenesis in the Arctic Euphausiid Thysanoessa inermis. Mar Biol 63:235–240CrossRefGoogle Scholar
  93. Hernández-León S, Fraga C, Ikeda T (2008) A global estimation of mesozooplankton ammonium excretion in the open ocean. J Plankton Res 30:577–585.  https://doi.org/10.1093/plankt/fbn021CrossRefGoogle Scholar
  94. Hirche HJ (1996) Diapause in the marine copepod, Calanus finmarchicus – a review. Ophelia 44:129–143CrossRefGoogle Scholar
  95. Hirche HJ (1997) Life cycle of the copepod Calanus hyperboreus in the Greenland Sea. Mar Biol 128:607–618CrossRefGoogle Scholar
  96. Hirche HJ, Mumm N (1992) Distribution of dominant copepods in the Nansen Basin, Arctic Ocean, in summer. Deep-Sea Res Part A 39:S485–S505CrossRefGoogle Scholar
  97. Hirche HJ, Niehoff B (1996) Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea- field and laboratory observations. Polar Biol 16:209–219CrossRefGoogle Scholar
  98. Hobbs LJ (2016) Winter vertical migration of Arctic zooplankton. University of Aberdeen, PhD thesisGoogle Scholar
  99. Hobbs L, Cottier FR, Last KS, Berge J (2018) Pan-Arctic diel vertical migration during the polar night. Mar Ecol Prog Ser 605:61–72CrossRefGoogle Scholar
  100. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalezuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wangberg SA, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  101. Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231CrossRefGoogle Scholar
  102. Hopcroft RR, Clarke C, Nelson RJ, Raskoff KA (2005) Zooplankton communities of the Arctic’s Canada Basin: the contribution by smaller taxa. Polar Biol 28:198–206CrossRefGoogle Scholar
  103. Hopkins CCE, Tande KS, Grønvik S (1984) Ecological investigations of the zooplankton community of Balsfjorden, Northern Norway. An analysis of growth and overwintering tactics in relation to niche and environment in Metridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thysanoessa inermis (Krøyer) and T. raschi (M. Sars). J Exp Mar Biol Ecol 82:77–99CrossRefGoogle Scholar
  104. Huenerlage K, Graeve M, Buchholz C, Buchholz F (2015) The other krill: overwintering physiology of adult Thysanoessa inermis (Euphausiacea) from the high-Arctic Kongsfjord. Aquat Biol 23:225–235.  https://doi.org/10.3354/ab00622CrossRefGoogle Scholar
  105. Huenerlage K, Graeve M, Buchholz F (2016) Lipid composition and trophic relationships of krill species in a high Arctic fjord. Polar Biol 39:1803–1817.  https://doi.org/10.1007/s00300-014-1607-6CrossRefGoogle Scholar
  106. Huntley ME, Nordhausen W, Lopez MDG (1994) Elemental composition, metabolic activity and growth of Antarctic krill Euphausia superba during winter. Mar Ecol Prog Ser 107:23–40CrossRefGoogle Scholar
  107. Ikeda T, Dixon P (1982) Body shrinkage as a possible over-wintering mechanism of the Antarctic krill, Euphausia superba Dana. J Exp Mar Biol Ecol 62:143–151CrossRefGoogle Scholar
  108. Johnsen G, Candeloro M, Berge J, Moline M (2014) Glowing in the dark: discriminating patterns of bioluminescence from different taxa during the Arctic polar night. Polar Biol 37:707–713.  https://doi.org/10.1007/s00300-014-1471-4CrossRefGoogle Scholar
  109. Jonasdottir SH (1999) Lipid content of Calanus finmarchicus during overwintering in the Faroe-Shetland Channel. Fish Oceanogr 8(Suppl. 1):61–72CrossRefGoogle Scholar
  110. Jónasdóttir SH, Visser AW, Richardson K, Heath MR (2015) Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS 112:12122–12126.  https://doi.org/10.1073/pnas.1512110112CrossRefPubMedPubMedCentralGoogle Scholar
  111. Jónasdóttir SH, Wilson RJ, Gislason A, Heath MR (2019) Lipid content in overwintering Calanus finmarchicus across the Subpolar Eastern North Atlantic Ocean. Limnol Oceanogr.  https://doi.org/10.1002/lno.11167
  112. Kattner G, Hagen W (1995) Polar herbivorous copepods - different pathways in lipid biosynthesis. ICES J Mar Sci 52:329–335CrossRefGoogle Scholar
  113. Kattner G, Hagen W (2009) Lipids in marine copepods: latitudinal characteristics and perspective to global warming. In: Kainz M, Brett MT, Arts MT (eds) Lipids in aquatic ecosystems. Springer New York, New York, NY, pp 257–280.  https://doi.org/10.1007/978-0-387-89366-2_11CrossRefGoogle Scholar
  114. Kattner G, Hagen W, Graeve M, Albers C (1998) Exceptional lipids and fatty acids in the Pteropod Clione Limacina (Gastropoda) from both polar oceans. Mar Chem 61:219–228CrossRefGoogle Scholar
  115. Kattner G, Albers C, Graeve M, Schnack-Schiel SB (2003) Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol 26:666–671CrossRefGoogle Scholar
  116. Kobari T, Steinberg DK, Ueda A, Tsuda A, Silver MW, Kitamura M (2008) Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep-Sea Res Part II 55:1648–1660.  https://doi.org/10.1016/j.dsr2.2008.04.016CrossRefGoogle Scholar
  117. Kögeler JW, Falk-Petersen S, Kristensen Å, Pettersen F, Dalen J (1987) Density-and sound speed contrast in sub-Arctic zooplankton. Polar Biol 7:231–235CrossRefGoogle Scholar
  118. Kosobokova K (1978) Diurnal vertical distribution of Calanus hyperboreus Kroyer and Calanus glacialis Jaschnov in Central Polar Basin. Oceanology 18:722–728Google Scholar
  119. Kosobokova KN (1999) The reproductive cycle and life history of the Arctic copepod Calanus glacialis in the White Sea. Polar Biol 22:254–263CrossRefGoogle Scholar
  120. Kosobokova K, Hirche HJ (2000) Zooplankton distribution across the Lomonosov Ridge, Arctic Ocean: species inventory, biomass and vertical structure. Deep-Sea Res Part I 47:2029–2060CrossRefGoogle Scholar
  121. Kosobokova KN, Hopcroft RR (2010) Diversity and vertical distribution of mesozooplankton in the Arctic’s Canada Basin. Deep-Sea Res Part II 57:96–110CrossRefGoogle Scholar
  122. Kosobokova KN, Hanssen H, Hirche HJ, Knickmeier K (1998) Composition and distribution of zooplankton in the Laptev Sea and adjacent Nansen Basin during summer, 1993. Polar Biol 19:63–76CrossRefGoogle Scholar
  123. Kosobokova K, Hopcroft RR, Hirche H (2011) Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers 41:29–50CrossRefGoogle Scholar
  124. Koszteyn J, Timofeev S, Weslawski JM, Malinga B (1995) Size structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) populations in European Arctic Seas. Polar Biol 15:85–92CrossRefGoogle Scholar
  125. Kraft A, Bauerfeind E, Nothig EM, Bathmann UV (2012) Size structure and life cycle patterns of dominant pelagic amphipods collected as swimmers in sediment traps in the eastern Fram Strait. J Mar Syst 95:1–15.  https://doi.org/10.1016/j.jmarsys.2011.12.006CrossRefGoogle Scholar
  126. Kraft A, Berge J, Varpe Ø, Falk-Petersen S (2013) Feeding in Arctic darkness: mid-winter diet of the pelagic amphipods Themisto abyssorum and T. libellula. Mar Biol 160:241–248.  https://doi.org/10.1007/s00227-012-2065-8CrossRefGoogle Scholar
  127. Kraft A, Graeve M, Janssen D, Greenacre M, Falk-Petersen S (2015) Arctic pelagic amphipods: lipid dynamics and life strategy. J Plankton Res 37:790–807.  https://doi.org/10.1093/plankt/fbv052CrossRefGoogle Scholar
  128. Kruse S, Hagen W, Bathmann U (2010) Feeding ecology and energetics of the Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica. Mar Biol 157:2289–2302.  https://doi.org/10.1007/s00227-010-1496-3CrossRefGoogle Scholar
  129. Kuklinski P, Berge J, McFadden L, Dmoch K, Zajaczkowski M, Nygård H, Piwosz K, Tatarek A (2013) Seasonality of occurrence and recruitment of Arctic marine benthic invertebrate larvae in relation to environmental variables. Polar Biol:1–12.  https://doi.org/10.1007/s00300-012-1283-3
  130. Lampert W (1989) The adaptive significance of diel vertical migration of zooplankton. Funct Ecol 3:21–27CrossRefGoogle Scholar
  131. Larson RJ, Harbison GR (1989) Source and fate of lipids in polar gelatinous zooplankton. Arctic 42:339–346CrossRefGoogle Scholar
  132. Last Kim S, Hobbs L, Berge J, Brierley Andrew S, Cottier F (2016) Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr Biol 26:244–251.  https://doi.org/10.1016/j.cub.2015.11.038CrossRefPubMedPubMedCentralGoogle Scholar
  133. Le Borgne R, Rodier M (1997) Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep-Sea Res Part II 44:2003–2023.  https://doi.org/10.1016/S0967-0645(97)00034-9CrossRefGoogle Scholar
  134. Lee RF (1975) Lipids of Arctic zooplankton. Comp Biochem Physiol 51:263–266CrossRefGoogle Scholar
  135. Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306CrossRefGoogle Scholar
  136. Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog Oceanogr 90:18–32CrossRefGoogle Scholar
  137. Levinsen H, Turner JT, Nielsen TG, Hansen BW (2000) On the trophic coupling between protists and copepods in Arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77CrossRefGoogle Scholar
  138. Lischka S, Hagen W (2005) Life histories of the copepods Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol 28:910–921CrossRefGoogle Scholar
  139. Lischka S, Hagen W (2007) Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Mar Biol 150:443–454CrossRefGoogle Scholar
  140. Lischka S, Gimenez L, Hagen W, Ueberschar B (2007) Seasonal changes in digestive enzyme (trypsin) activity of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol 30:1331–1341.  https://doi.org/10.1007/s00300-007-0294-yCrossRefGoogle Scholar
  141. Lischka S, Hagen W (2016) Seasonal dynamics of mesozooplankton in the Arctic Kongsfjord (Svalbard) during year-round observations from August 1998 to July 1999. Polar Biol:1–20.  https://doi.org/10.1007/s00300-016-2005-z
  142. Ludvigsen M, Berge J, Geoffroy M, Cohen JH, De La Torre PR, Nornes SM, Singh H, Sørensen AJ, Daase M, Johnsen G (2018) Use of an autonomous surface vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci Adv 4.  https://doi.org/10.1126/sciadv.aap9887
  143. Lundberg M, Hop H, Eiane K, Gulliksen B, Falk-Petersen S (2006) Population structure and accumulation of lipids in the ctenophore Mertensia ovum. Polar Biol 149:1345–1353Google Scholar
  144. Madsen SD, Nielsen TG, Hansen BW (2001) Annual population development and production by Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland. Mar Biol 139:75–93CrossRefGoogle Scholar
  145. Majaneva S, Berge J, Renaud PE, Vader A, Stubner E, Rao AM, Sparre O, Lehtiniemi M (2013) Aggregations of predators and prey affect predation impact of the Arctic ctenophore Mertensia ovum. Mar Ecol Prog Ser 476:87–100.  https://doi.org/10.3354/meps10143CrossRefGoogle Scholar
  146. Mayzaud P, Falk-Petersen S, Noyon M, Wold A, Boutoute M (2016) Lipid composition of the three co-existing Calanus species in the Arctic: impact of season, location and environment. Polar Biol 39:1819–1839.  https://doi.org/10.1007/s00300-015-1725-9CrossRefGoogle Scholar
  147. Meyer B, Auerswald L, Siegel V, Spahić S, Pape C, Fach BA, Teschke M, Lopata AL, Fuentes V (2010) Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar Ecol Prog Ser 398:1–18CrossRefGoogle Scholar
  148. Møller EF, Nielsen TG, Richardson K (2006) The zooplankton community in the Greenland Sea: composition and role in carbon turnover. Deep-Sea Res Part I 53:76–93.  https://doi.org/10.1016/j.dsr.2005.09.007CrossRefGoogle Scholar
  149. Morata N, Søreide JE (2013) Effect of light and food on the metabolism of the Arctic copepod Calanus glacialis. Polar Biol:1–7.  https://doi.org/10.1007/s00300-013-1417-2
  150. Narcy F, Gasparini S, Falk-Petersen S, Mayzaud P (2009) Seasonal and individual variability of lipid reserves in Oithona similis (Cyclopoida) in an Arctic fjord. Polar Biol 32:233–242.  https://doi.org/10.1007/s00300-008-0524-yCrossRefGoogle Scholar
  151. Nicol S, Virtue P, King R, Davenport SR, McGaffin AF, Nichols P (2004) Condition of Euphausia crystallorophias off East Antarctica in winter in comparison to other seasons. Deep-Sea Res Part II 51:2215–2224.  https://doi.org/10.1016/j.dsr2.2004.07.002CrossRefGoogle Scholar
  152. Niehoff B, Hirche HJ (2005) Reproduction of Calanus glacialis in the Lurefjord (western Norway): indication for temperature-induced female dormancy. Mar Ecol Prog Ser 285:107–115CrossRefGoogle Scholar
  153. Ohman MD (1990) The demographic benefits of diel vertical migration by zooplankton. Ecol Monogr 60:257–281CrossRefGoogle Scholar
  154. Percy JA, Fife FJ (1981) The biochemical composition and energy content of Arctic marine macrozooplankton. Arctic 34:307–313CrossRefGoogle Scholar
  155. Percy JA, Fife FJ (1985) Energy distribution in an Arctic coastal macrozooplankton community. Arctic 38:39–42CrossRefGoogle Scholar
  156. Pond DW (2012) The physical properties of lipids and their role in controlling the distribution of zooplankton in the oceans. J Plankton Res 34:443–453.  https://doi.org/10.1093/plankt/fbs027CrossRefGoogle Scholar
  157. Pond DW, Tarling GA (2011) Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol Oceanogr 56:1310–1318.  https://doi.org/10.4319/lo.2011.56.4.1310CrossRefGoogle Scholar
  158. Putzeys S, Yebra L, Almeida C, Bécognée P, Hernández-León S (2011) Influence of the late winter bloom on migrant zooplankton metabolism and its implications on export fluxes. J Mar Syst 88:553–562.  https://doi.org/10.1016/j.jmarsys.2011.07.005CrossRefGoogle Scholar
  159. Quetin LB, Ross RM (1991) Behavioral and physiological characteristics of the Antarctic krill, Euphausia superba. Am Zool 31:49–63CrossRefGoogle Scholar
  160. Ringelberg J (2010) Diel vertical migration of zooplankton in lakes and oceans: causal explanations and adaptive significances vol 1. Springer, DordrechtCrossRefGoogle Scholar
  161. Rodier M, Le Borgne R (1997) Export flux of particles at the equator in the western and Central Pacific Ocean. Deep-Sea Res Part II 44:2085–2113.  https://doi.org/10.1016/S0967-0645(97)00092-1CrossRefGoogle Scholar
  162. Sampei M, Forest A, Sasaki H, Hattori H, Makabe R, Fukuchi M, Fortier L (2009a) Attenuation of the vertical flux of copepod fecal pellets under Arctic Sea ice: evidence for an active detrital food web in winter. Polar Biol 32:225–232.  https://doi.org/10.1007/s00300-008-0523-zCrossRefGoogle Scholar
  163. Sampei M, Sasaki H, Hattori H, Forest A, Fortier L (2009b) Significant contribution of passively sinking copepods to the downward export flux in Arctic waters. Limnol Oceanogr 54:1894–1900.  https://doi.org/10.4319/lo.2009.54.6.1894CrossRefGoogle Scholar
  164. Sargent JR, Falk-Petersen S (1981) Ecological investigations on the zooplankton community in Balsfjorden, Northern Norway – Lipids and fatty acids in Meganyctiphanes norvegica, Thysanoessa raschi and Thysanoessa inermis during mid-winter. Mar Biol 62:131–137CrossRefGoogle Scholar
  165. Sargent JR, Falk-Petersen S (1988a) The lipid biochemistry of calanoid copepods. Hydrobiologia 167/168:101–114CrossRefGoogle Scholar
  166. Sargent JR, Falk-Petersen S (1988b) The lipid biochemistry of calanoid copepods. In: Boxshall G, Schminke HK (eds) Biology of copepods, vol 47. Developments in hydrobiology. Springer Netherlands, Dordrecht, pp 101–114.  https://doi.org/10.1007/978-94-009-3103-9_9CrossRefGoogle Scholar
  167. Sartoris FJ, Thomas DN, Cornils A, Schiela SBS (2010) Buoyancy and diapause in Antarctic copepods: the role of ammonium accumulation. Limnol Oceanogr 55:1860–1864.  https://doi.org/10.4319/lo.2010.55.5.1860CrossRefGoogle Scholar
  168. Schmidt K (2010) Food and feeding in Northern krill (Meganyctiphanes norvegica Sars). Adv Mar Biol 57:127–171.  https://doi.org/10.1016/b978-0-12-381308-4.00005-4CrossRefPubMedPubMedCentralGoogle Scholar
  169. Schründer S, Schnack-Schiel SB, Auel H, Sartoris FJ (2013) Control of diapause by acidic pH and ammonium accumulation in the hemolymph of antarctic copepods. PLoS One 8:e77498.  https://doi.org/10.1371/journal.pone.0077498CrossRefPubMedPubMedCentralGoogle Scholar
  170. Scott CL, Falk-Petersen S, Sargent JR, Hop H, Lønne OJ, Poltermann M (1999) Lipids and trophic interactions of ice fauna and pelagic zooplankton in the marginal ice zone of the Barents Sea. Polar Biol 21:65–70CrossRefGoogle Scholar
  171. Seuthe L, Darnis G, Riser CW, Wassmann P, Fortier L (2007) Winter-spring feeding and metabolism of Arctic copepods: insights from faecal pellet production and respiration measurements in the southeastern Beaufort Sea. Polar Biol 30:427–436CrossRefGoogle Scholar
  172. Seuthe L, Rokkan Iversen K, Narcy F (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol 34:751–766CrossRefGoogle Scholar
  173. Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing in blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Change Biol 16:3154–3163.  https://doi.org/10.1111/j.1365-2486.2010.02175CrossRefGoogle Scholar
  174. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM (2008) Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr 53:1327–1338.  https://doi.org/10.4319/lo.2008.53.4.1327CrossRefGoogle Scholar
  175. Stübner EI, Søreide JE, Reigstad M, Marquardt M, Blachowiak-Samolyk K (2016) Year-round meroplankton dynamics in high-Arctic Svalbard. J Plankton Res 38:522–536.  https://doi.org/10.1093/plankt/fbv124CrossRefGoogle Scholar
  176. Svensen C, Seuthe L, Vasilyeva Y, Pasternak A, Hansen E (2011) Zooplankton distribution across Fram Strait in autumn: are small copepods and protozooplankton important? Prog Oceanogr 91:534–544.  https://doi.org/10.1016/j.pocean.2011.08.001CrossRefGoogle Scholar
  177. Swanberg N (1974) Feeding behavior of Beroe ovata. Mar Biol 24:69–76CrossRefGoogle Scholar
  178. Terazaki M (2004) Life history strategy of the chaetognath Sagitta elegans in the World Oceans. Coastal Mar Sci 29:1–12Google Scholar
  179. Thibault D, Head EJH, Wheeler PA (1999) Mesozooplankton in the Arctic Ocean in summer. Deep-Sea Res Part I 46:1391–1415CrossRefGoogle Scholar
  180. Torres JJ, Donnelly J, Hopkins TL, Lancraft TM, Aarset AV, Ainley DG (1994) Proximate composition and overwintering strategies of Antarctic micronektonic Crustacea. Mar Ecol Prog Ser 113:221–232.  https://doi.org/10.3354/meps113221CrossRefGoogle Scholar
  181. Ussing HH (1938) The biology of some important plankton animals in the fjords of East Greenland. Medd Grønl 100:1–108Google Scholar
  182. Visser AW, Jónasdottir SH (1999) Lipids, buoyancy and the seasonal vertical migration of Calanus finmarchicus. Fish Oceanogr 8:100–106CrossRefGoogle Scholar
  183. Visser AW, Grønning J, Jónasdóttir SH (2017) Calanus hyperboreus and the lipid pump. Limnol Oceanogr 62:1155–1165.  https://doi.org/10.1002/lno.10492CrossRefGoogle Scholar
  184. Wallace MI, Cottier FR, Berge J, Tarling GA, Griffiths C, Brierley AS (2010) Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behavior. Limnol Oceanogr 55:831–845CrossRefGoogle Scholar
  185. Webster CN, Varpe Ø, Falk-Petersen S, Berge J, Stübner E, Brierley A (2013) Moonlit swimming: vertical distributions of macrozooplankton and nekton during the polar night. Polar Biol 38:75–85.  https://doi.org/10.1007/s00300-013-1422-5CrossRefGoogle Scholar
  186. Welch HE, Siferd TD, Bruecker P (1996) Population densities, growth, and respiration of the chaetognath Parasagitta elegans in the Canadian high Arctic. Can J Fish Aquat Sci 53:520–527.  https://doi.org/10.1139/cjfas-53-3-520CrossRefGoogle Scholar
  187. Welch HE, Siferd TD, Bruecker P (1997) Marine zooplanktonic and benthic community respiration rates at resolute, Canadian high Arctic. Can J Fish Aquat Sci 54:999–1005Google Scholar
  188. Weslawski JM, Kwasniewski S, Wiktor J (1991) Winter in a Svalbard fjord ecosystem. Arctic 44:115–123Google Scholar
  189. Weslawski JM, Kwasniewski S, Stempniewicz L, Blachowiak-Samolyk K (2006) Biodiversity and energy transfer to top trophic levels in two contrasting Arctic fjords. Pol Polar Res 27:259–278Google Scholar
  190. Willis KJ, Cottier FR, Kwasniewski S (2008) Impact of warm water advection on the winter zooplankton community in an Arctic fjord. Polar Biol 31:475–481.  https://doi.org/10.1007/s00300-007-0373-0CrossRefGoogle Scholar
  191. Zamora-Terol S, Nielsen TG, Saiz E (2013) Plankton community structure and role of Oithona similis on the western coast of Greenland during the winter-spring transition. Mar Ecol Prog Ser 483:85–102.  https://doi.org/10.3354/meps10288CrossRefGoogle Scholar
  192. Zhang X, Dam HG (1997) Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep-Sea Res Part II 44:2191–2202.  https://doi.org/10.1016/S0967-0645(97)00060-XCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Arctic and Marine Biology, Faculty for Bioscience, Fisheries and EconomyUiT the Arctic University of NorwayTromsøNorway
  2. 2.The University Centre in SvalbardLongyearbyenNorway
  3. 3.Centre for Autonomous Marine Operations & Systems (AMOS), Trondhjem Biological Station, Department of BiologyNorwegian University of Science & Technology (NTNU)TrondheimNorway
  4. 4.Scottish Association for Marine Science, Scottish Marine InstituteObanUK
  5. 5.Department of Maths and StatisticsUniversity of StrathclydeGlasgowUK
  6. 6.Akvaplan-niva AS, Fram CentreTromsøNorway
  7. 7.Québec-Océan, Département de biologieUniversité LavalQuébecCanada

Personalised recommendations