Skip to main content

Insect Viruses as Biocontrol Agents: Challenges and Opportunities

  • Chapter
  • First Online:
Cottage Industry of Biocontrol Agents and Their Applications

Abstract

Insect viruses were isolated from many insect pests from different families to represent a potential alternative for chemical pesticides. Viruses from families baculoviruses, cypoviruses, and densoviruses have been registered as biological control agents. Insect viruses are considered effective and environmental-friendly which may contribute to the achievement of sustainable agriculture goals through providing a suitable alternative to the chemical insecticides which have negative impacts on the environment and to the non-target organisms. However, the application of insect viruses as bio-control agents also have certain limitations. These include their slow action to their target, narrow host range, problems associated with the large-scale production and the development of insect host resistance against certain viruses. This chapter will discuss the challenges and the prospective use of insect viruses as biological control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beas-Catena A, Sánchez-Mirón A, García-Camacho F, Contreras-Gómez A, Molina-Grima E (2014) Baculovirus biopesticides: an overview. J Anim Plant Sci 24:362–373

    Google Scholar 

  2. Hunter-Fujita FR, Entwistle PF, Evans HF, Crook NE (1998) Insect viruses and pest management. In: Insect viruses and pest management [cited 2019 Apr 12]. Available from: https://www.cabdirect.org/cabdirect/abstract1105344

  3. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  Google Scholar 

  4. Herzfeld D, Kay S (2011) Integrated pest management. In: Private pesticide applicator study manual, 19th edn. University of Minnesota Extension, Minnesota. Available from: http://apps.extension.umn.edu/agriculture/pesticide-safety/ppat_manual/Intro.pdf

  5. Thézé J, Lopez-Vaamonde C, Cory JS, Herniou EA (2018) Biodiversity, evolution and ecological specialization of baculoviruses: a treasure trove for future. Appl Res Viruses 10

    Google Scholar 

  6. Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Cont 21:230–248

    Article  Google Scholar 

  7. Sun X (2015) History and current status of development and use of viral insecticides in China. Viruses 7:306–319

    Article  Google Scholar 

  8. Sun X, Peng H (2007) Recent advances in biological control of pest insects by using viruses in China. Virol Sin 22:158–162

    Article  CAS  Google Scholar 

  9. Sun X, Wang H, Sun X, Chen X, Peng C, Pan D et al (2004) Biological activity and field efficacy of a genetically modified Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus expressing an insect-selective toxin from a chimeric promoter. Biol Control 29:124–137

    Article  Google Scholar 

  10. Kaya HK, Lacey LA (2007) Introduction to microbial control. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Springer Netherlands, Dordrecht [cited 2019 Apr 12], pp 3–7. Available from: https://doi.org/10.1007/978-1-4020-5933-9_1

  11. Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philosoph Trans Royal Soc B Biol Sci 363:761–776

    Article  CAS  Google Scholar 

  12. Carruthers RI, Onsager JA (1993) Perspective on the use of exotic natural enemies for biological control of pest grasshoppers (Orthoptera: Acrididae). Environ Entomol 2:885–903

    Article  Google Scholar 

  13. van Lenteren JC (2019) IOBC internet book of biological control—IOBC-Global, International Organisation for Biological Control [cited 2019 Apr 16]. http://www.iobc-global.org/publications_iobc_internet_book_of_biological_control.html

  14. Vincent C, Andermatt M, Valéro J (2007) Madex® and VirosoftCP4®, viral biopesticides for codling moth control. In: Vincent C, Goethel MS, Lazarovits G (eds) Biological control: a global perspective, pp 336–343

    Google Scholar 

  15. Robinson AJ, Holland MK (1995) Testing the concept of virally vectored immunosterilisation for the control of wild rabbit and fox populations in Australia. Aust Veter J 72:65–68

    Article  CAS  Google Scholar 

  16. Lockwood JA (2008) Six-legged soldiers: using insects as weapons of war. Oxford University Press

    Google Scholar 

  17. Dyck VA, Gardiner GT (1992) Sterile-insect release program to control the codling moth Cydia pomonella (L.) (Lepidoptera: Olethreuridae) in British Columbia, Canada. Acta Phytopathol Entomol Hung 27:219–222

    Google Scholar 

  18. Black BC, Brennan LA, Dierks PM, Gard IE (1997) Commercialization of baculoviral insecticides. In: The baculoviruses. Springer, Berlin, pp 341–387

    Google Scholar 

  19. Toprak U, Bayram Ş, Gürkan MO (2005) Gross pathology of SpliNPVs and alterations in Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) morphology due to baculoviral infection. Tarim Bilimleri Dergisi 11:65–71

    Google Scholar 

  20. Cory JS, Evans HF (2007) Viruses. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Springer Netherlands, Dordrecht [cited 2019 Apr 12], pp 149–74. Available from: https://doi.org/10.1007/978-1-4020-5933-9_7

  21. Moscardi F (1999) Assessment of the application of baculoviruses for control of lepidoptera. Annu Rev Entomol 44:257–289

    Article  CAS  Google Scholar 

  22. Steinhaus EA (2019) Disease in a minor chord: being a semihistorical and semibiographical account of a period in science when one could be happily yet seriously concerned with the diseases of lowly animals without backbones, especially the insects. The Ohio State University Press [cited 2019 Apr 12]. Available from: https://kb.osu.edu/handle/1811/29317

  23. Steinhaus EA (1956) Potentialities for microbial control of insects. J Agric Food Chem 4:676–680

    Article  Google Scholar 

  24. Steinhaus EA (1957) Microbial diseases of insects. Ann Rev Microbiol 11:165–182

    Article  CAS  Google Scholar 

  25. Burges HD, Horace D (1981) Microbial control of pests and plant diseases 1970–1980. Academic Press [cited 2019 Apr 12]. Available from: http://agris.fao.org/agris-search/search.do?recordID=US201300331594

  26. Kaya HK, Lacey LA (2000) Introduction to Microbial Control. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Springer Netherlands, Dordrecht [cited 2019 Apr 12]. pp 1–4. Available from: https://doi.org/10.1007/978-94-017-1547-8_1

  27. Tanada Y, Kaya HK (1993) Insect pathology. Academic Press

    Google Scholar 

  28. Evans HF (1986) Ecology and epizootiology of baculoviruses [cited 2019 Apr 12]. Available from: http://agris.fao.org/agris-search/search.do?recordID=US881247488

  29. Toprak U, Harris S, Baldwin D, Theilmann D, Gillott C, Hegedus DD et al (2012) Role of enhancin in Mamestra configurata nucleopolyhedrovirus virulence: selective degradation of host peritrophic matrix proteins. J Gen Virol 93:744–753

    Article  CAS  Google Scholar 

  30. Volkman LE, Summers MD, Hsieh CH (1976) Occluded and nonoccluded nuclear polyhedrosis virus grown in Trichoplusia ni: comparative neutralization comparative infectivity, and in vitro growth studies. J Virol 19:820–832

    CAS  Google Scholar 

  31. Wang P, Granados RR (1997) An intestinal mucin is the target substrate for a baculovirus enhancin. PNAS 94:6977–6982

    Article  CAS  Google Scholar 

  32. Braunagel SC, Summers MD (2007) Molecular biology of the baculovirus occlusion-derived virus envelope [cited 2019 Apr 16]. Available from: https://www.ingentaconnect.com/content/ben/cdt/2007/00000008/00000010/art00006

  33. Payne CC (1982) Insect viruses as control agents. Parasitology 84:35–77

    Article  Google Scholar 

  34. Martignoni ME, Iwai PJ (1986) A catalog of viral diseases of insects, mites, and ticks. Gen Tech Rep PNW-GTR-195 Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 57 p [cited 2019 Apr 12]; 195. Available from: https://www.fs.usda.gov/treesearch/pubs/26278

  35. Groner A (1986) Specificity and safety of baculoviruses [cited 2019 Apr 12]. Available from: http://agris.fao.org/agris-search/search.do?recordID=US881246788

  36. Matthews R (1982) Classification and nomenclature of viruses. Fourth report of the International Committee on Taxonomy of Viruses. Intervirology 17:1–199

    Article  Google Scholar 

  37. Grzywacz D, Moore S (2017) Production, formulation, and bioassay of baculoviruses for pest control. In: Lacey LA (ed) Microbial control of insect and mite pests (Chap. 7). Academic Press [cited 2019 Apr 16], pp 109–24. Available from: http://www.sciencedirect.com/science/article/pii/B978012803527600007X

  38. Onstad D (1998) Two databases provide information about insect pathogens. ASM NEWS 64:9

    Google Scholar 

  39. Rohrmann GF (2013) Baculovirus molecular biology [Internet], 3rd edn. Bethesda (MD), National Center for Biotechnology Information (US) [cited 2019 Apr 6]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK114593/

  40. Rohrmann GF (2013) Baculoviruses as insecticides: three examples. National Center for Biotechnology Information (US) [cited 2019 Apr 6]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK138299/

  41. Allen GE, Knell JD (1977) A nuclear polyhedrosis virus of Anticarsia gemmatalis: I. Ultrastructure, replication, and pathogenicity. Florida Entomologist 60:233–240

    Google Scholar 

  42. Carner GR, Turnipseed SG (1977) Potential of a nuclear polyhedrosis virus for control of the velvetbean caterpillar in soybean. J Econ Entomol 70:608–610

    Article  Google Scholar 

  43. Tanada Y (1964) A granulosis virus of the codling moth, Carpocapsa pomonella (Linnaeus) (Olethreutinae, Lepidoptera). J Insect Pathol 6:78–80

    Google Scholar 

  44. Reid S, Chan LCL, Matindoost L, Pushparajan C, Visnovsky G (2016) Cell culture for production of insecticidal viruses. Methods Mol Biol 1477:95–117

    Article  CAS  Google Scholar 

  45. de Almeida AF, de Macedo GR, Chan LCL, da Pedrini MRS (2010) Kinetic analysis of in vitro production of wild-type Spodoptera frugiperda nucleopolyhedrovirus. Braz Arch Biol Technol 53:285–291

    Article  Google Scholar 

  46. Lua LHL, Reid S (2000) Virus morphogenesis of Helicoverpa armigera nucleopolyhedrovirus in Helicoverpa zea serum-free suspension culture. J Gen Virol 81:2531–2543

    Article  CAS  Google Scholar 

  47. Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10:1063–1081

    Article  CAS  Google Scholar 

  48. Micheloud GA, Gioria VV, Eberhardt I, Visnovsky G, Claus JD (2011) Production of the Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line in stirred reactor and airlift reactor. J Virol Methods 178:106–116

    Article  CAS  Google Scholar 

  49. Micheloud GA, Gioria VV, Pérez G, Claus JD (2009) Production of occlusion bodies of Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line: Influence of infection conditions and statistical optimization. J Virol Methods 162:258–266

    Article  CAS  Google Scholar 

  50. Nguyen Q, Qi YM, Wu Y, Chan LCL, Nielsen LK, Reid S (2011) In vitro production of Helicoverpa baculovirus biopesticides—automated selection of insect cell clones for manufacturing and systems biology studies. J Virol Methods 175:197–205

    Article  CAS  Google Scholar 

  51. Pedrini MRS, Reid S, Nielsen LK, Chan LCL (2011) Kinetic characterization of the group II Helicoverpa armigera nucleopolyhedrovirus propagated in suspension cell cultures: Implications for development of a biopesticides production process. Biotechnol Prog 27:614–624

    Article  CAS  Google Scholar 

  52. Ignoffo CM (1964) Production and virulence of a nuclear polyhedrosis virus from larvae of Trichoplusia ni (Hubner) reared on a semisynthetic diet. J Insect Pathol 6:318–329

    Google Scholar 

  53. Stern V, Federici B (1990) Granulosis virus: biological control for western grape leaf skeletonizer. Calif Agric 44:21–22

    Article  Google Scholar 

  54. Ignoffo CM, Garcia C (1985) Host spectrum and relative virulence of an Ecuadoran and a Mississippian biotype of Nomuraea rileyi. J Invertebr Pathol 45:346–352

    Article  Google Scholar 

  55. Vail PV, Jay DL, Hink WF (1973) Replication and infectivity of the nuclear polyhedrosis virus of the alfalfa looper, Autographa californica, produced in cells grown in vitro. J Inverteb Pathol 22:231–237

    Article  Google Scholar 

  56. Hostetter DL, Puttler B (1991) A new broad host spectrum nuclear polyhedrosis virus isolated from a celery looper, Anagrapha falcifera (Kirby), (Lepidoptera: Noctuidae). Environ Entomol 20:1480–1488

    Article  Google Scholar 

  57. Kirkpatrick BA, Washburn JO, Volkman LE (1998) AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens. J Inverteb Pathol 72:63–72

    Article  CAS  Google Scholar 

  58. McNeil J, Cox-Foster D, Gardner M, Slavicek J, Thiem S, Hoover K (2010) Pathogenesis of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar and mechanisms of developmental resistance. J Gen Virol 91:1590–1600

    Article  CAS  Google Scholar 

  59. McNeil J, Cox-Foster D, Slavicek J, Hoover K (2010) Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus. J Insect Physiol 56:1167–1177

    Article  CAS  Google Scholar 

  60. Engelhard EK, Volkman LE (1995) Developmental resistance in fourth instar Trichoplusia ni orally inoculated with Autographa californica M nuclear polyhedrosis virus. Virology 209:384–389

    Article  CAS  Google Scholar 

  61. Briese D (1986) Host resistance to microbial control agents. Fortschritte der Zoologie 32:233–256

    Google Scholar 

  62. Levy SM, Falleiros ÂMF, Moscardi F, Gregório EA (2011) The role of peritrophic membrane in the resistance of Anticarsia gemmatalis larvae (Lepidoptera: Noctuidae) during the infection by its nucleopolyhedrovirus (AgMNPV). Arthropod Struct Dev 40:429–434

    Article  Google Scholar 

  63. Murillo R, Lasa R, Goulson D, Williams T, Muñoz D, Caballero P (2003) Effect of Tinopal LPW on the insecticidal properties and genetic stability of the nucleopolyhedrovirus of Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 96:1668–1674

    Article  CAS  Google Scholar 

  64. Wang P, Granados RR (2001) Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 47:110–118

    Article  CAS  Google Scholar 

  65. Grove MJ, Hoover K (2007) Intrastadial developmental resistance of third instar gypsy moths (Lymantria dispar L.) to L. dispar nucleopolyhedrovirus. Biol Cont 40:355–361

    Article  Google Scholar 

  66. Zafar B, Wani SA, Malik MA, Ganai MA (2013) A review: disease resistance in silkworm. Bombyx Mori 4:157–166

    Google Scholar 

  67. Berling M, Blachere-Lopez C, Soubabere O, Lery X, Bonhomme A, Sauphanor B et al (2009) Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl Environ Microbiol 75:925–930

    Article  CAS  Google Scholar 

  68. Eberle KE, Asser-Kaiser S, Sayed SM, Nguyen HT, Jehle JA (2008) Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12. J Inverteb Pathol 98:293–298

    Article  CAS  Google Scholar 

  69. Gebhardt MM, Eberle KE, Radtke P, Jehle JA (2014) Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38. Proc Natl Acad Sci USA 111:15711–15716

    Article  CAS  Google Scholar 

  70. Asser-Kaiser S, Heckel DG, Jehle JA (2010) Sex linkage of CpGV resistance in a heterogeneous field strain of the codling moth Cydia pomonella (L.). J Inverteb Pathol 103:59–64

    Article  CAS  Google Scholar 

  71. Asser-Kaiser S, Fritsch E, Undorf-Spahn K, Kienzle J, Eberle KE, Gund NA et al (2007) Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 317:1916–1918

    Article  CAS  Google Scholar 

  72. Fuxa JR, Richter AR (1998) Repeated reversion of resistance to nucleopolyhedrovirus by Anticarsia gemmatalis. J Inverteb Pathol 71:159–164

    Article  CAS  Google Scholar 

  73. Fuxa JR, Richter AR (1989) Reversion of resistance by Spodoptera frugiperda to nuclear polyhedrosis virus. J Inverteb Pathol 53:52–56

    Article  Google Scholar 

  74. Undorf-Spahn K, Fritsch E, Huber J, Kienzle J, Zebitz CPW, Jehle JA (2012) High stability and no fitness costs of the resistance of codling moth to Cydia pomonella granulovirus (CpGV-M). J Inverteb Pathol 111:136–142

    Article  Google Scholar 

  75. Yamaguchi K (1977) Regeneration of the midgut epithelial cells in the silkworm, Bombyx mori, infected with the cytoplasmic polyhedrosis virus. J Sericult Sci Jpn 46:170–180

    Google Scholar 

  76. David WAL, Gardiner BOC (1965) Resistance of Pieris brassicae (Linnaeus) to granulosis virus and the virulence of the virus from different host races. J Inverteb Pathol 7:285–290

    Article  Google Scholar 

  77. Abot AR, Moscardi F, Fuxa JR, Sosa-Gómez DR, Richter AR (1996) Development of resistance by Anticarsia gemmatalisfrom Brazil and the United States to a nuclear polyhedrosis virus under laboratory selection pressure. Biol Cont 7:126–130

    Article  Google Scholar 

  78. Cunningham JC (1995) Baculoviruses as microbial insecticides [cited 2019 Apr 12]. Available from: https://www.cfs.nrcan.gc.ca/publications?id=21623

  79. Groner A (1990) Safety to nontarget invertebrates of baculoviruses. In: Safety of microbial insecticides, pp 135–47

    Google Scholar 

  80. Huber J (1986) Use of baculoviruses in pest management programs [cited 2019 Apr 12]. http://agris.fao.org/agris-search/search.do?recordID=US19880053890

  81. Dougherty EM, Guthrie KP, Shapiro M (1996) Optical brighteners provide baculovirus activity enhancement and UV radiation protection. Biol Cont 7:71–74

    Article  Google Scholar 

  82. Petrik DT, Iseli A, Montelone BA, Van Etten JL, Clem RJ (2003) Improving baculovirus resistance to UV inactivation: increased virulence resulting from expression of a DNA repair enzyme. J Invertebrate Pathol 82:50–56

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adly M. M. Abd-Alla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd-Alla, A.M.M., Meki, I.K., Demirbas-Uzel, G. (2020). Insect Viruses as Biocontrol Agents: Challenges and Opportunities. In: El-Wakeil, N., Saleh, M., Abu-hashim, M. (eds) Cottage Industry of Biocontrol Agents and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-33161-0_9

Download citation

Publish with us

Policies and ethics