Skip to main content

Metalogic, Schopenhauer and Universal Logic

  • Chapter
  • First Online:
Language, Logic, and Mathematics in Schopenhauer

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

Schopenhauer used the word “metalogical” since his first work, On the Fourfold Root of the Principle of Sufficient Reason (1813), being the first to give it a precise meaning and a proper place within a philosophical system. One century later the word “Metalogic” started to be used and promoted in modern logic by the Russian logician Nicolai Vasiliev and the Polish School (Łukasiewicz, Tarski, Wajsberg). The aim of this paper is to examine the relations between the different uses of this word and doing that to try to have a better understanding of what Metalogic is and also logic tout court.

In a first section we examine and clarify the meaning of Metalogic in modern logic, comparing Metalogic to Metamathematics and Universal Logic. We make in particular a distinction between two trends in Metalogic that can be crystallized through metatheorem vs. meta-axiom.

In a second section we present Schopenhauer’s use of the word, which is essentially through the notion of metalogical truths. We describe their locations within Schopenhauer’s framework, standing side by side with other kinds of truths (metaphysical truths, logical truths, empirical truths), constituting altogether the Principle of Sufficient Reason (PSR) of Knowledge, one of the four roots of the PSR. We explain why Schopenhauer thinks that mathematical truths do not need to have a logical ground and present his view according to which metalogical truths are fundamental laws of thought that cannot be changed. We discuss the feminine nature he attributes to them and establish a parallel with Aristotle’s vision of logic.

In a third section we examine how modern logic arose from a double challenge of the fundamental laws of logic: their reformulation and relocation, their relativization and rejection. We emphasize that this dynamic evolution was performed on the basis of some semiotical and conceptual changes at the heart of logic and Metalogic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The same can be said about a central terminology and a central character of modern logic: “truth-value” and Gottlob Frege (1848–1925), see [20].

  2. 2.

    This is also expressed as an opposition between semantics and syntax. “Proof Theory” as coined by Hilbert concentrates on mathematical proofs from a syntactical point of view, according to which mathematics, Hilbert says, “becomes a stock of formulae” [62]. “Model Theory” was coined by Tarski [114] and deals with the interpretation of the syntax, the models of the theories.

  3. 3.

    The two books by Hilbert on logic are entitled Grundzüge der theoretischen Logik (1928), co-authored with Wilhelm Ackermann, 1896–1962 [63] (in English: Principles of Mathematical Logic) and Grundlagen der Mathematik (in English: Foundations of Mathematics), (Volume 1, 1934 - Volume 2, 1939), co-authored with Paul Bernays, 1888–1977 [64].

  4. 4.

    Kleene later on (1967) published another textbook entitled Mathematical Logic [69] full of model theory, giving up Metamathematics both syntactically and semantically. In particular he uses in this book the expression “Model Theory” for propositional logic, which is up to now unfortunately not so common.

  5. 5.

    Gentzen also worked on “natural deduction”, developing formal systems supposed to catch in a more natural way reasoning. For a discussion about that see [103], which makes a connection with Schopenhauer who was already concerned by this point.

  6. 6.

    To fix the ideas we have symbolically put here as dates of birth and death of this school, respectively, the coming of Łukasiewicz to Warsaw University and his departure from this university. Of course one can argue that this school started before 1915 and did not stop in 1944, that it is still alive, see the recent book The Lvov-Warsaw School, Past and Present [50].

  7. 7.

    See also two papers by Vasiliev of the same period: [118] and [119]. For a general presentation of Vasiliev and his work, see [2, 3].

  8. 8.

    This figure is extracted from our previous paper “Is Modern Logic Non-Aristotelian?” [22] related to a lecture presented at a conference in honor of Vasiliev, October 24–25, 2012 at Lomonosov Moscow State University. And it was published in a book with other papers presented at this conference.

  9. 9.

    “Sentential Logic” and “Propositional Logic” are both used. The first expression is used by people who want to emphasize, not to say to force, a syntactic or/and linguistic interpretation.

  10. 10.

    Translation from Polish courtesy of Robert Purdy—checked and revised by Zygmunt.

  11. 11.

    For a presentation of the different kinds of proof-theoretical systems, the relation between them and their metalogical features, see [12].

  12. 12.

    Moreover Tarski was not considering a relation but a function, an “operator” acting on theories. It seems that for developing his theory he was influenced by the topological work of Kuratowski, with whom he collaborated at some point. The three properties presented here are not the same as, but are equivalent to, the ones of Tarski’s consequence operator which look like those of a topological space, see [107].

  13. 13.

    Abraham Robinson (1918–1974) however talked about “The metamathematics of algebra” [91].

  14. 14.

    Compare with what S.Haack says in the section Logic, philosophy of logic, metalogic of her 1978 book.

  15. 15.

    Maybe Schopenhauer is too harsh with the philosopher known for claiming that we are living in the best of all possible worlds, by contrast to Schopenhauer’s idea, according to which we maybe are in the worst of all possible worlds. For a more neutral assessment of Leibniz on the Principle of Reason see [85].

  16. 16.

    English translation courtesy of Jens Lemanski. No English translation of this Handwritten Manuscript has yet been published.

  17. 17.

    About the distinction between form and matter in syllogistic, see [32,33,34].

  18. 18.

    PA’ is here the conjunction of the propositions of a finite subtheory of PA, from which IP is a consequence.

  19. 19.

    Roy Cook says: “Metalogic can be captured, loosely, by the slogan reasoning about reasoning”, we agree with him but we do not reduce reasoning about reasoning to metalogic as he describes it, i.e., the “mathematical study of formal systems that are intended to capture correct reasoning.” [36, p. 188].

References

  1. Ancien Moniteur, Réimpression Mai 1789 - Novembre 1799, Tome 18ème, Plon, Paris, 1847.

    Google Scholar 

  2. V.A.Bazhanov, The Fate of One Forgotten Idea: N.A. Vasiliev and His Imaginary Logic, Studies in Soviet Thought, 39 (1990), pp.333–344.

    Article  Google Scholar 

  3. V.A.Bazhanov, Non-Classical Stems from Classical: N. A. Vasiliev’s Approach to Logic and his Reassessment of the Square of Opposition, Logica Universalis, 2 (2018), pp.71–76.

    Article  MathSciNet  MATH  Google Scholar 

  4. P.Bernhard, Visualizations of the Square of Opposition, Logica Universalis, 2 (2008), pp.31–41.

    Article  MathSciNet  MATH  Google Scholar 

  5. P.Bernays, Beiträge zur axiomatischen Behandlung des Logik-Kalküls. Habilitationsschrift, Universität Göttingen. Unpublished Typescript,1918.

    Google Scholar 

  6. P.Bernays, Axiomatische Untersuchungen des Aussagen-Kalküls der ‘Principia Mathematica’, Mathematische Zeitschrift, 25 (1926) pp.305–320. Abridged version of [5]. Translated into English by R.Zach and presented by W.A.Carnielli in [29], pp.33–56.

  7. J.-Y.Beziau, O princípio de razão suficiente e a lógica segundo Arthur Schopenhauer, in Século XIX: O Nascimento da Ciência Contemporânea, F.R.R.Évora (ed), Cle-Unicamp, Campinas, 1992, pp.35–39.

    Google Scholar 

  8. J.-Y.Beziau, La critique Schopenhauerienne de l’usage de la logique en mathématiques, O Que Nos Faz Pensar, 7 (1993), pp.81–88.

    Google Scholar 

  9. J.-Y.Beziau, On the formalization of the principium rationis sufficientis, Bulletin of the Section of Logic, 22 (1993), pp.2–3.

    Google Scholar 

  10. J.-Y.Beziau, Théorie législative de la négation pure, Logique et Analyse, 147–148 (1994), pp.209–225.

    MathSciNet  MATH  Google Scholar 

  11. J.-Y.Beziau, O suicídio segundo Arthur Schopenhauer, Discurso, 28 (1997), pp.127–143.

    Article  Google Scholar 

  12. J.-Y.Beziau, Rules, derived rules, permissible rules and the various types of systems of deduction, in E.H.Hauesler and L.C.Pereira (eds), Proof, types and categories, PUC, Rio de Janeiro, 1999, pp.159–184.

    Google Scholar 

  13. J.-Y.Beziau, Sequents and bivaluations, Logique et Analyse, 44 (2001), pp.373–394.

    MathSciNet  MATH  Google Scholar 

  14. J.-Y.Beziau, New Light on the Square of Oppositions and its Nameless Corner, Logical Investigations, 10, (2003), pp.218–232.

    MathSciNet  MATH  Google Scholar 

  15. J.-Y.Beziau, Les axiomes de Tarski, in R.Pouivet and M.Rebuschi (eds), La philosophie en Pologne 1918–1939, Vrin, Paris, 2006, pp.135–149.

    Google Scholar 

  16. J.-Y.Beziau, What is “Formal logic” ?, in Myung-Hyun-Lee (ed), Proceedings of the XXII World Congress of Philosophy, vol.13, Korean Philosophical Association, Seoul, 2008, pp.9–22.

    Google Scholar 

  17. J.-Y.Beziau, Logic is Not Logic, Abstracta 6 (2010), pp.73–102.

    Google Scholar 

  18. J.-Y.Beziau, What is a Logic? – Towards axiomatic emptiness, Logical Investigations, 16 (2010), pp.272–279.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-Y.Beziau, Rougier: Logique et Métaphyisque, in P.Zordan (ed), Proceedings of the 4th World Conference on Metaphysics, Dykinson, 2011, pp.464–472.

    Google Scholar 

  20. J.-Y.Beziau, History of Truth-Values, in D.M.Gabbay, F.J.Pelletier and J.Woods (eds), Handbook of the History of Logic, Vol. 11 – Logic: A History of its Central Concepts, Elsevier, Amsterdam, 2012, pp.233–305.

    Google Scholar 

  21. J.-Y.Beziau, The New Rising of the Square of Opposition, in J.-Y.Beziau and D.Jacquette (eds), Around and Beyond the Square of Opposition, Birkhäuser, Basel, 2012, pp.6–24.

    Google Scholar 

  22. J.-Y.Beziau, Is Modern Logic Non-Aristotelian?, in V.Markin and D.Zaitsev (eds), The Logical Legacy of Nikolai Vasiliev and Modern Logic, Springer International Publishing, Cham, 2017, pp.19–41

    Google Scholar 

  23. J.-Y.Beziau, Opposition and Order, in J.-Y.Beziau and S.Gerogiorgakis (eds), New Dimensions of the Square of Opposition, Philosophia Verlag, Munich, 2017, pp.321–335.

    Google Scholar 

  24. J.-Y.Beziau, There is no Cube of Opposition, in J.-Y.Beziau and G.Basti (eds), The Square of Opposition: A Cornerstone of Thought, Birkhäuser, Basel, 2017, pp.179–193

    Google Scholar 

  25. J.-Y.Beziau, The Lvov-Warsaw School: A True Mythology, in [50], Birkhäuser, Basel, 2018, pp.779–815.

  26. J.-Y.Beziau, Universal Logic: Evolution of a Project. Logica Universalis, 12 (2018), pp.1–8.

    Article  MathSciNet  MATH  Google Scholar 

  27. J.-Y.Beziau, Is the Principle of Contradiction a Consequence ofx 2 = x?, Logica Universalis, 12 (2018), pp.55–81.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.-Y.Beziau, Cats that are not Cats - Towards a Natural Philosophy of Paraconsistency, in D.Gabbay, L.Magnani, W.Park and A.-V.Pietarinen (eds), Natural Arguments - A Tribute to John Woods, College Publication, London, 2019, pp.49–71.

    Google Scholar 

  29. J.-Y.Beziau (ed), Universal Logic: An Anthology, Birkhäuser, Basel, 2012.

    MATH  Google Scholar 

  30. G.Boole, An Investigation of the Laws of Thought on which are Founded the Mathematical Theories of Logic and Probabilities, MacMillan, London, 1854.

    MATH  Google Scholar 

  31. N.Bourbaki, Éléments de mathématique, 11 volumes, Hermann and Others Publishers, Paris, 1939–2016. The English translation has been published by various publishers. It is currently published by Springer.

    Google Scholar 

  32. J.Brumberg-Chaumont, Universal Logic and Aristotelian Logic: Formality and Essence of Logic, Logcia Universalis, 9 (2015), pp.253–278.

    Article  MathSciNet  MATH  Google Scholar 

  33. J.Brumberg-Chaumont, La forme syllogistique et le problème des syllogismes sophistiques selon Robert Kilwardby, in L.Cesallli, F.Goubier and A. de Librea (eds), Formal Approaches and Natural Language in Medieval Logic - Proceedings of the XIXth European Symposium of Medieval Logic and Semantics, Geneva, 12–16 June 2012, Fédération Internationale des Instituts d’Études Médiévales, Rome, 2016, pp.188–213.

    Google Scholar 

  34. J.Brumberg-Chaumont, Form and Matter of the Syllogism in Anonymus Cantabrigiensis, in B.Bydén and C.Thomsen Thörnqvist (eds), Aristotelian Tradition Aristotle’s Works on Logic and Metaphysics and Their Reception in the Middle Ages, Pontifical Institute of Mediaeval Studies, Toronto, 2017, pp.188–213.

    Google Scholar 

  35. R.Chuaqui and P.Suppes, Free-variable Axiomatic Foundations of Infinitesimal Analysis: A Fragment with Finitary Consistency Proof, Journal of Symbolic Logic, 60 (1995), 122–159.

    Article  MathSciNet  MATH  Google Scholar 

  36. R.T.Cook, A Dictionary of Philosophical Logic, Edinburgh University Press, Edinburgh, 2009.

    Google Scholar 

  37. M.Correia, The Proto-exposition of Aristotelian Categorical Logic, in J.-Y.Beziau and G.Basti (eds), The Square of Opposition: A Cornerstone of Thought, Birkhäuser, Basel, 2017, pp.21–34.

    Google Scholar 

  38. N.C.A. da Costa, J.-Y.Beziau and O.A.S.Bueno, Paraconsistent logic in a historical perspective, Logique et Analyse, 150–152 (1995), pp.111–125.

    MathSciNet  MATH  Google Scholar 

  39. N.C.A. da Costa and F.A. Doria, Undecidability and incompleteness in classical mechanics, International Journal of Theoretical Physics, 30 (1991), pp.1041–1073.

    Article  MathSciNet  MATH  Google Scholar 

  40. H.B.Curry, Grundlagen der kombinatorischen Logik, 1929. Translated into English and presented by F.Kamareddine and J.Seldin: Foundations of Combinatory Logics, College Publications, London, 2017.

    Google Scholar 

  41. H.B.Curry, The Inconsistency of Certain Formal Logics, Journal of Symbolic Logic, 7 (1942), pp.115–117.

    Article  MathSciNet  MATH  Google Scholar 

  42. H.B.Curry, Leçons de logique algébrique, E.Nauwelaerts, Louvain and Gauthiers-Villars, Paris, 1952.

    Google Scholar 

  43. H.B.Curry, Foundations of Mathematical Logic, McGraw-Hill, New York, 1963, reprinted by Dover, New York, 1977.

    Google Scholar 

  44. M.-J.Durand-Richard, George Peacock (1791–1858): La synthèse algébrique comme loi symbolique dans l’Angleterre des réformes, PhD thesis, EHEES, Paris, 1985.

    Google Scholar 

  45. M.-J.Durand-Richard, Opération, fonction et signification de Boole à Frege, Cahiers Critiques de Philosophie, 3 (2007), pp.99–128.

    Google Scholar 

  46. Encyclopaedia Britannica, Laws of thought, https://www.britannica.com/topic/laws-of-thought

  47. P.B. Eggenberger, The Philosophical Background of L.E.J. Brouwer’s Intuitionistic Mathematics, University of California, Berkeley, Ph.D. Thesis, 1976.

    Google Scholar 

  48. W.B.Ewald (ed), From Kant to Hilbert. A Source Book in the Foundations of Mathematics, 2 volumes, Oxford University Press, Oxford, 1996.

    Google Scholar 

  49. P.Février, Les relations d’incertitude d’Heisenberg et la logique, Travaux du IXe Congrès International de Philosophie, volume 6, Logique et Mathématiques, Paris, 1937, pp.88–94.

    Google Scholar 

  50. A.Garrido and U.Wybraniec-Skardowska (eds), The Lvov-Warsaw School, Past and Present, Birkäuser, Basel 2018.

    MATH  Google Scholar 

  51. G.Gentzen, Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen, Mathematische Annalen, 107, 1932, pp.329–350.

    Article  MATH  Google Scholar 

  52. G.Gentzen, Untersuchungen über das logische Schließen. I -II, Mathematische Zeitschrift, 39 (1935), pp.176–210 and pp.405–431.

    Google Scholar 

  53. G.Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, 112 (1936) pp.493–565.

    Article  MathSciNet  MATH  Google Scholar 

  54. K.Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I., Monatshefte für Mathematik und Physik 38 (1931), pp.173–198.

    Article  MathSciNet  MATH  Google Scholar 

  55. E.L.Gomes and I.M.L.D’Ottaviano, Aristotle’s theory of deduction and paraconsistency, Principia 14 (2010), pp.71–97.

    Google Scholar 

  56. S.Haack, Philosophy of Logics, in Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  57. M.Heidegger, Der Satz vom Grund, Günther Neske, Pfullingen,1957.

    Google Scholar 

  58. A.-S.Heinemann, Schopenhauer and the Equational Form of Predication, this volume.

    Google Scholar 

  59. P.Hertz, Über Axiomensysteme für beliebige Satzsysteme. I, Mathematische Annalen, 87 (1922), pp.246–269. English translation and presentation by J.Legirs in [29], pp.3–29.

  60. P.Hertz, Von Wesen des Logischen, insbesondere der Bedeutung des modus Barbara, Erkenntnis, 2 (1921), pp.369–392.

    Article  MATH  Google Scholar 

  61. D.Hilbert, Neubegründung der Mathematik: Erste Mitteilung, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 1 (1922), pp.155–177. Translated into English as The new Grounding of mathematics in [48], Vol.2, pp.1115–1133.

  62. D.Hilbert, Die logischen Grundlagen der Mathematik, Mathematische Annalen, 88 (1923), pp.151–165. Translated into English as The Logical Foundations of Mathematics in [48], Vol.2, pp.1134–1148.

  63. D.Hilbert and W.Ackermann, Grundzüge der theoretischen Logik, Springer, Berlin, 1929.

    MATH  Google Scholar 

  64. D.Hilbert and P.Bernays, Grundlagen der Mathematik, Two Volumes, Springer, Berlin, 1934 and 1939.

    Google Scholar 

  65. S.Jáskowski, Rachunek zdan dla systemów dedukcyjnych sprzecznych, Studia Societatis Scientiarum Torunensis, Sectio A, I(5), 55–77.

    Google Scholar 

  66. D.Jaspers, Logic and Colour, Logica Universalis, 6 (2011), pp.227–248.

    Article  MathSciNet  MATH  Google Scholar 

  67. I.Kant, Kritik der reinen Vernunft, 1st edition, 1781, 2nd edition, 1787.

    Google Scholar 

  68. S.C.Kleene, Introduction to metamathematics, North Holland, Amsterdam, 1952.

    MATH  Google Scholar 

  69. S.C.Kleene, Mathematical logic, John Wiley and Sons, New York, 1967.

    MATH  Google Scholar 

  70. S.C.Kleene, Introduction to metamathematics. Reprinted edition of [68] by Ishi Press International, New York, 2009.

  71. S.C.Kleene, The writing of Introduction to metamathematics, in T.Drucker (ed), Perspectives on the History of Mathematical Logic, Birkhäuser, Basel, 1991, pp.161–168.

    Google Scholar 

  72. T.Koetsier, Arthur Schopenhauer and L.E.J. Brouwer: A Comparison, in T.Koetsier and L.Bergmans (eds), Mathematics and the Divine – A Historical Study, Elsevier, Amsterdam, 2005, pp.569–594.

    Google Scholar 

  73. J.Lemanski and A.Moktefi, Making Sense of Schopenhauer’s Diagram of Good and Evil, in P. Chapman et al. (eds.): Diagrams 2018, LNAI 10871, Springer International Publishing, Cham, 2018, pp.721–724.

    Google Scholar 

  74. J.Łukasiewicz, O zasadzie sprzeczności u Arystotelesa, Studium krytyczne, Akademia Umiejetnosci, Kraków, 1910.

    Google Scholar 

  75. J.Łukasiewicz, O logice trójwartosciowej, Ruch Filozoficzny, 5 (1920), pp.170–171. English Translation in [78].

  76. J.Łukasiewicz, O logice stoikow, Przegla̧d Filozoficzny, 30 (1927), pp.278–279.

    Google Scholar 

  77. J.Łukasiewicz and A.Tarski, Untersuchungen über den Aussagenkalkül, Comptes Rendus des Séances de la Société des Sciences et des Lettres des Varsovie Classe III, 23 (1930), pp.30–50.

    MATH  Google Scholar 

  78. S.MacCall (eds), Polish Logic 1920–1939, Oxford University Press, New York, 1967.

    Google Scholar 

  79. S.MacLane, Mathematics, form and function, Springer, New York, 1986.

    Book  MATH  Google Scholar 

  80. B.Magee, The Philosophy of Schopenhauer, Oxford University Press, Oxford, 1983.

    Google Scholar 

  81. O.Makridis, The Sheffer Stroke, Internet Encyclopedia of Philosophy, https://www.iep.utm.edu/sheffers/

  82. R.Monk, Ludwig Wittgenstein: The Duty of Genius, Vintage, London, 1991.

    Google Scholar 

  83. R.Nelsen, Proofs without words - Exercises in visual thinking I-II-III, Mathematical American Association, Washington, 1993–2016.

    Google Scholar 

  84. F.Nietzsche, Schopenhauer als Erzieher, 1874.

    Google Scholar 

  85. B.Paz, The principle of reason according to Leibniz: the origins, main assumptions and forms, Roczniki Filozoficzne, 65 (2017), pp.111–143.

    Article  Google Scholar 

  86. M.Pedroso, O Conhecimento enquanto Afirmação da Vontade de Vida: Um estudo acerca da dialética erística de Arthur Schopenhauer, Master Thesis, University of Brasilia, 2016.

    Google Scholar 

  87. C.S.Peirce, A Boolian Algebra with One Constant.

    Google Scholar 

  88. E.Post, Introduction to a General Theory of Elementary Propositions, American Journal of Mathematics, 43 (1921), pp.163–185.

    Article  MathSciNet  MATH  Google Scholar 

  89. H.Rasiowa and R.Sikorski, The mathematics of metamathematics, PWN-Polish Scientific Publishers, Warsaw, 1963.

    MATH  Google Scholar 

  90. W.Rautenberg, Einführung in die Mathematische Logik, Vieweg, Braunschweig, 1996.

    MATH  Google Scholar 

  91. A.Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland, Amsterdam, 1963.

    MATH  Google Scholar 

  92. C.Rosset, Schopenhauer, philosophe de l’absurde, Presses Universitaires de France, Paris, 1967.

    Google Scholar 

  93. C.Rosset, L’Esthétique de Schopenhauer, Presses Universitaires de France, Paris, 1969.

    Google Scholar 

  94. L.Rougier, Les Paralogismes du rationalisme, Alcan, Paris, 1920.

    MATH  Google Scholar 

  95. L.Rougier, The Relativity of Logic, Philosophy and Phenomenological Research, 2 (1941), pp.137–158. Reprinted in [29] with presentation and comments by M.Marion, pp.93–122.

  96. L.Rougier, Traité de la connaissance, Gauthiers-Villars, Paris, 1955.

    MATH  Google Scholar 

  97. M.Ruffing, Die 1, 2, 3 / 4-Konstellation bei Schopenhauer, in Reinhard Brandt (ed), Die Macht des Vierten. Über eine Ordnung der europäischen Kultur, Hamburg, 2014, pp.329–334.

    Google Scholar 

  98. H.Scholz, Abriss der Geschichte der Logik, Karl Albert, Freiburg and Munich, 1931.

    Google Scholar 

  99. A.Schopenhauer, Über die vierfache Wurzel des Satzes vom zureichenden Grunde, 1813, 1847.

    Google Scholar 

  100. A.Schopenhauer, Die Welt als Wille und Vorstellung, 1818, 1844, 1859.

    Google Scholar 

  101. A.Schopenhauer, Parerga and Paraliponema, 1851.

    Google Scholar 

  102. A.Schopenhauer, Handschriftliche Nachlass, (= SW, Vol. IX), Piper, Munich, 1913.

    Google Scholar 

  103. H.M.Schüler and J.Lemanski, Arthur Schopenhauer on Naturalness in Logic, this volume.

    Google Scholar 

  104. M.Serfati, La revolution symbolique. La constitution de l’écriture symbolique mathématique, Petra, Paris, 2005.

    Google Scholar 

  105. T.Skolem, Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fundamenta Mathematicae, 23 (1934), pp.150–161.

    Article  MATH  Google Scholar 

  106. R.Silvestre, Philosophical logic = Philosophy + Logic?, in J.-Y.Beziau, J.-P-Desclés, A.Moktefi and A.Pascu (eds), Logic in Question - Paris Spring Workshop 2011–2019, Birkhäuser, Basel, 2019.

    Google Scholar 

  107. A.Tarski, Remarques sur les notions fondamentales de la méthodologie des mathématiques, Annales de la Société Polonaise de Mathématique, 7 (1928), pp.270–272. English translation and presentation by J.Zygmunt and R.Purdy in [29], pp.59–68.

  108. A.Tarski, Über einige fundamentale Begriffe der Metamathematik, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie XXIII, Classe III (1930), pp.22–29. Translated into English as On some fundamental concepts of metamathematics, in [115], pp.30–37.

  109. A.Tarski, Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I, Monatshefte für Mathematik und Physik, 37 (1930), pp.361–404. Translated into English as Fundamental Concepts of the Methodology of the Deductive Sciences, in [115], pp.59–109.

  110. A.Tarski, O pojȩciu wynikania logicznego, Przegla̧d Filozoficzny, 39 (1936), pp.58–68. English translation: On the concept of following logically by M.Stroinska and D.Hitchcock, History and Philosophy of Logic 23 (2003), pp.155–196.

    Google Scholar 

  111. A.Tarski, Sur la méthode déductive, in Travaux du IXe Congrès International de Philosophie, VI, Hermann, Paris, 1937, pp.95–103.

    Google Scholar 

  112. A.Tarski, 0 logice matematycznej i metodzie dedukcyjnej, Atlas, Lvóv and Warsaw (4th English edition by Jan Tarski: Introduction to Logic and to the Methodology of the Deductive Sciences, Oxford University Press, Oxford, 1994).

    Google Scholar 

  113. A.Tarski, Review of A. Mostowski’s O niezależnosci definicji skończoności w systemie logiki (On the Independence of Definitions of Finiteness in a System of Logic), Journal of Symbolic Logic, 3 (1938), pp.115–116.

    Article  Google Scholar 

  114. A.Tarski, Contributions to the theory of models. I, II, III, Indigationes Mathematicae, 16 (1954), pp.572–588, 17 (1955), pp.56–64.

    Google Scholar 

  115. A.Tarski, Logic, Semantics, Metamathematics - Papers from 1923 to 1938, 1st edition, Clarendon, Oxford, 1956. 2nd edition, Hackett, Indianapolis, 1983.

    Google Scholar 

  116. A. Tarski, Pisma logiczno filozoficzne, Volume 2: Metalogika, Translated into Polish and edited by Jan Zygmunt, WN PWN, Warsaw, 2000.

    Google Scholar 

  117. M.Troxell, Arthur Schopenhauer (1788–1860), Internet Encyclopedia of Philosophy, https://www.iep.utm.edu/schopenh/

  118. N.A.Vasiliev, On Partial Judgments, Triangle of Opposition, Law of Excluded Forth, Kazan, 1910.

    Google Scholar 

  119. N.A.Vasiliev, Imaginary (non-Aristotelian) Logic, Journal of the Ministry of Education, 40 (1912), pp.207–246. English translation in Logique et Analyse, 182 (2003), pp.127–163.

    Google Scholar 

  120. N.A.Vasiliev, Logic and Metalogic, Logos 1/2 (1913), pp.53–81, English translation in Axiomathes, 3 (1993), pp.329–351.

    Google Scholar 

  121. J.Venn, Symbolic Logic, Macmillan, London, 1881.

    Book  MATH  Google Scholar 

  122. M.Wajsberg, Logical works (translated and edited by S.J.Surma), Ossolineun, Wrocław, 1977.

    Google Scholar 

  123. M.Wajsberg, Beitrag zur Metamathematik, Mathematische Annalen, 109 (1933–34), pp.200–229. English Translation in [122].

  124. M.Wajsberg, Beiträge zum Metaaussagenkalkül. I, Monatshefte für Mathematik und Physik, 42(1935), pp.221–242. English Translation in [122].

  125. M.Wajsberg, Metalogische Beiträge. I, Wiadomości matematyczne, vol. 43 (1937), pp.131–168. English Translation in [122] and [78].

  126. M.Wajsberg, Metalogische Beiträge. II, Wiadomosci matematyczne, vol. 47 (1939), pp.119–139. English Translation in [122] and [78].

  127. M.Wille, ‘Metamathematics’ in Transition, History and Philosophy of Logic, 32 (2011), pp.333–358.

    Article  MathSciNet  MATH  Google Scholar 

  128. A.N.Whitehead, A Treatise on Universal Logic with Applications, Cambridge University Press, Cambridge, 1898.

    Google Scholar 

  129. A.N.Whitehead and B.Russell, Principia Mathematica, Cambridge University Press, Cambridge, 1910–1913.

    MATH  Google Scholar 

  130. L.Wittgenstein, Logisch-Philosophische Abhandlung, Annalen der Naturphilosophie, 14 (1921), pp.185–262.

    Google Scholar 

  131. J.Woleński, Logic and Philosophy in the Lvov-Warsaw School, Kluwer Dordrecht, 1989.

    Google Scholar 

  132. J.H.Woodger, The Axiomatic Method in Biology, Cambridge University Press, Cambridge, 1937.

    MATH  Google Scholar 

  133. R.Zach, Hilbert’s Program Then and Now, in D.Jacqutte. D.M.Gabbay, P.Thagard and J.Woods (eds), Handbook of the Philosophy of Science, Volume 5, Philosophy of Logic, Elsevier, Amsterdam, 2007.

    Google Scholar 

  134. J.Zygmunt, Introduction to [116].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Beziau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beziau, JY. (2020). Metalogic, Schopenhauer and Universal Logic. In: Lemanski, J. (eds) Language, Logic, and Mathematics in Schopenhauer. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-33090-3_13

Download citation

Publish with us

Policies and ethics