Future Perspectives of the Optical Clearing Method

  • Luís Manuel Couto Oliveira
  • Valery Victorovich Tuchin
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


After making an overview on the most recent progresses regarding the optical immersion treatment technique, we use this chapter to look to the future and perspectives of the following developments and benefits that can be achieved. The increasing number of publications on OC in the last 30 years, which we present in Sect. 9.1, indicates that this is a promising method to aid in the application of optical techniques in clinical practice for diagnosis or treatment purposes. Since several spectroscopy, fluorescence, or imaging methods have recently been used to test and validate the OC effects in various human and animal tissues, a collection of OCAs and OC protocols have been developed. Section 9.2 shows that to get even better results in tissue OC, the discovery of new agents and establishment of new protocols is a work in progress. Section 9.3 indicates the future perspectives for tissue spectroscopy during OC treatment and that the potential of the refractive index matching mechanism can also be evaluated in the ultraviolet range. Section 9.4 discusses the future perspectives of tissue imaging and OC. The establishment of new and faster OC protocols for tissue imaging is suggested, and indication for the necessary efforts to adapt the light-sheet technique to image in vivo is also made. Finally, Sect. 9.5 presents other applications of tissue OC and suggests the cooperation between research fields to increase knowledge in the use of OCAs and their benefits for each field.


Future perspective of OC Spectroscopy research direction Optical tissue imaging research improvement OC applications in the other fields New OCAs Imaging OC protocols in vivo 


  1. 1.
    W. Spalteholz, Über das Durchsichtigmachen von menschlichen und tierichen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirzel, Leipzig, 1911)Google Scholar
  2. 2.
    W. Spalteholz, Über das Durchsichtigmachen von menschlichen und tierichen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirzel, Leipzig, 1914)Google Scholar
  3. 3.
    E.A. Genina, A.N. Bashkatov, Y.P. Sinichkin, I.Y. Yanina, V.V. Tuchin, Optical clearing of tissues: benefits for biology, medical diagnostics, and phototherapy, in Handbook of Optical Biomedical Diagnostics, ed. by V. V. Tuchin, vol. 2, 2nd edn., (SPIE Press, Bellingham, WA, 2016), pp. 565–637Google Scholar
  4. 4.
    V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, vol PM 254, 3rd edn. (SPIE Press, Bellingham, WA, 2015)CrossRefGoogle Scholar
  5. 5.
    T. Vo-Dihn (ed.), Biomedical Photonics Handbook (CRC Press, Boca Raton, FL, 2014)Google Scholar
  6. 6.
    L.V. Wang, H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, Hoboken, NJ, 2007)Google Scholar
  7. 7.
    R. K. Wang, V. V. Tuchin (eds.), Advanced Biophotonics: Tissue Optical Sectioning (CRC Press, Taylor & Francis Group, London, 2013)Google Scholar
  8. 8.
    V.V. Tuchin, Optical immersion as a new tool for controlling the optical properties of tissues and blood. Laser Phys. 15, 1109–1136 (2005)Google Scholar
  9. 9.
    V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2006)Google Scholar
  10. 10.
    K. Tainaka, T.C. Murakami, E.A. Susaki, C. Shimizu, R. Saito, K. Takahashi, A. Hayashi-Takagi, H. Sekiya, Y. Arima, S. Nojima, M. Ikemura, T. Ushiku, Y. Shimizu, M. Murakami, K.F. Tanaka, M. Iino, H. Kasai, T. Sasaoka, K. Kobayashi, K. Miyazono, E. Morii, T. Isa, M. Fukayama, A. Kakita, H.R. Ueda, Chemical landscape for tissue clearing based on hydrophilic reagents. Cell Rep. 24, 2196–2210 (2018)Google Scholar
  11. 11.
    A.A. Selifonov, V.V. Tuchin, Kinetics of optical properties on selected laser lines of human periodontal gingiva when exposed to glycerol-propylene glycol mixture, in International Symposium FLAMN-19 (Fundamentals of Laser Assisted Micro- & Nanotechnologies), Symposium Program, Paper PS3-C02-9, St. Petersburg, 30 June–4 July, 2019, p.71.
  12. 12.
  13. 13.
    K. Iijima, T. Oshima, R. Kawakami, T. Nemoto, Optical clearing of living brains with MAGICAL to extend in vivo imaging. bioRxiv, 507426 (2019).
  14. 14.
    S.P. van Rosendal, M.A. Osborne, R.G. Fassett, J.S. Coombes, Guidelines for glycerol use in hyperhydration and rehydration associated with exercise. Sports Med. 40(2), 113–129 (2010)CrossRefGoogle Scholar
  15. 15.
    N.J. Yang, M.J. Hinner, Getting across the cell membrane: an overview for small molecules, peptides and proteins. Methods Mol. Biol. 1266, 29–53 (2015)CrossRefGoogle Scholar
  16. 16.
    D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, V.V. Tuchin, Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. J. Biophotonics 8(4), 332–346 (2015)CrossRefGoogle Scholar
  17. 17.
    D.K. Tuchina, A.N. Bashkatov, A.B. Bucharskaya, E.A. Genina, V.V. Tuchin, Study of glycerol diffusion in skin and myocardium ex vivo under the conditions of developing alloxan-induced diabetes. J. Biomed. Photon. Eng 3(2), 020302 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Wang, Y. Zhang, T.H. Xu, Q.M. Luo, D. Zhu, An innovative transparent cranial window based on skull optical clearing. Laser Phys. Lett. 9(6), 469–473 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    E.A. Genina, A.N. Bashkatov, O.V. Semyachkina-Glushkovskaya, V.V. Tuchin, Optical clearing of cranial bone by multicomponent immersion solutions and cerebral venous blood flow visualization. Izv. Saratov Univ. (N. S.), Ser. Phys. 17, 98–110 (2017)Google Scholar
  20. 20.
    Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q. Luo, T.-H. Xu, D. Zhu, Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light Sci. Appl. 7, e17153 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    E.A. Susaki, H.R. Ueda, Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23(1), 137–157 (2016)CrossRefGoogle Scholar
  22. 22.
    W. Zhang, S. Liu, W. Zhang, W. Hu, M. Jiang, A. Tamadon, Y. Feng, Skeletal muscle CLARITY: a preliminary study of imaging the three-dimensional architecture of blood vessels and neurons. Cell J. 20(2), 132–137 (2018)Google Scholar
  23. 23.
    E. Lee, J. Choi, Y. Jo, J.Y. Kim, Y.J. Jang, H.M. Lee, S.Y. Kim, H.-J. Lee, K. Cho, N. Jung, E.M. Hur, S.J. Jeong, C. Moon, Y. Choe, I.J. Rhyu, H. Kim, W. Sun, ACT-Presto: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    C.A. Warner, M.L. Biedrzycki, S.S. Jacobs, R.J. Wisser, J.L. Caplan, D.J. Sherrier, An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol. 166, 1684–1687 (2014)CrossRefGoogle Scholar
  25. 25.
    K.J.I. Lee, G.M. Calder, C.R. Hindle, J.L. Newman, S.N. Robinson, J.J.H.Y. Avondo, E.S. Coen, Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity. J. Exp. Bot. 68(3), 527–538 (2017)Google Scholar
  26. 26.
    Visikol, Inc, White Paper: Clearing Agent for Botanical Microscopy (Visikol, Inc, Whitehouse Station, NJ, 2016). Accessed at www.visikol.comGoogle Scholar
  27. 27.
    E. Vasileva, Y. Li, I. Sychugov, M. Mensi, L. Berglund, S. Popov, Lasing from organic dye molecules embedded in transparent wood. Adv. Optical Mater 5, 1700057 (2017)CrossRefGoogle Scholar
  28. 28.
    H. Li, X. Guo, Y. He, R. Zheng, A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites. J. Mater. Res. 34(6), 932–940 (2019)ADSCrossRefGoogle Scholar
  29. 29.
    I. Niskanen, J. Heikkinen, J. Mikkonen, A. Harju, H. Herajarvi, M. Venalainen, K.-E. Peiponen, Detection of the effective refractive index of thermally modified Scots pine by immersion liquid method. J. Wood Sci. 58, 46–50 (2012)CrossRefGoogle Scholar
  30. 30.
    M.M. Nazarov, A.P. Shkurinov, E.A. Kuleshov, V.V. Tuchin, Terahertz time-domain spectroscopy of biological tissues. Quant. Electron. 38(7), 647–654 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    M. Nazarov, A. Shkurinov, V.V. Tuchin, X.-C. Zhang, Terahertz tissue spectroscopy and imaging, in Handbook of Photonics for Biomedical Science, ed. by V. V. Tuchin, (CRC Press, Taylor & Francis Group, London, 2010), pp. 591–613. Chapter 23Google Scholar
  32. 32.
    A.S. Kolesnikov, E.A. Kolesnikova, A.P. Popov, M.M. Nazarov, A.P. Shkurinov, V.V. Tuchin, In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents. Quant. Electron. 44(7), 633–640 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    A.S. Kolesnikov, E.A. Kolesnikova, D.K. Tuchina, A.G. Terentyuk, M. Nazarov, A.A. Skaptsov, A.P. Shkurinov, V.V. Tuchin, In-vitro terahertz spectroscopy of rat skin under the action of dehydrating agents. Proc. SPIE 9031, 90310D (2014). Scholar
  34. 34.
    A.S. Kolesnikov, E.A. Kolesnikova, K.N. Kolesnikova, D.K. Tuchina, A.P. Popov, A.A. Skaptsov, M.M. Nazarov, A.P. Shkurinov, A.G. Terentyuk, V.V. Tuchin, THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents. Phys. Wave Phenom. 22(3), 169–176 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y.V. Grachev, Y.G. Toropova, V. Tuchin, Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods. Biomed. Opt. Express 9(3), 1198–1215 (2018)CrossRefGoogle Scholar
  36. 36.
    G.R. Musina, A.A. Gavdush, D.K. Tuchina, I.N. Dolganova, G.A. Komandin, S.V. Chuchupal, O.A. Smolyanskaya, O.P. Cherkasova, K.I. Zaytsev, V.V. Tuchin, A comparison of terahertz optical constants and diffusion coefficients of tissue immersion optical clearing agents. Proc. SPIE 11065, 468 (2019). Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and MedicineCrossRefGoogle Scholar
  37. 37.
    O.A. Smolyanskaya, N.V. Chernomyrdin, A.A. Konovko, K.I. Zaytsev, I.A. Ozheredov, O.P. Cherkasova, M.M. Nazarov, J.-P. Guillet, S.A. Kozlov, Y.V. Kistenev, J.-L. Coutaz, P. Mounaix, V.L. Vaks, J.-H. Son, H. Cheon, V.P. Wallace, Y. Feldman, I. Popov, A.N. Yaroslavsky, A.P. Shkurinov, V.V. Tuchin, Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quant. Electron. 62, 1–77 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    K.I. Zaytsev, I.N. Dolganova, N.V. Chernomyrdin, G.M. Katyba, A.A. Gavdush, O.P. Cherkasova, G.A. Komandin, M.A. Shchedrina, A.N. Khodan, D.S. Ponomarev, I.V. Reshetov, V.E. Karasik, M.A. Skorobogatiy, V.N. Kurlov, V.V. Tuchin, Malignancy diagnosis using terahertz spectroscopy and imaging: a review. J. Opt. Accepted Manuscript online 15 October 2019Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luís Manuel Couto Oliveira
    • 1
  • Valery Victorovich Tuchin
    • 2
    • 3
    • 4
    • 5
  1. 1.Physics Department and Center for Innovation in Engineering and Industrial TechnologyPolytechnic Institute of Porto – School of EngineeringPortoPortugal
  2. 2.Department of Optics and BiophotonicsSaratov State UniversitySaratovRussia
  3. 3.Institute of Precision Mechanics and Control of the RASSaratovRussia
  4. 4.Bach Institute of BiochemistryResearch Center of Biotechnology of the RASMoscowRussia
  5. 5.Tomsk State University, Tomsk & ITMO UniversitySt. PetersburgRussia

Personalised recommendations