Other Applications of Optical Clearing Agents

  • Luís Manuel Couto Oliveira
  • Valery Victorovich Tuchin
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


In this chapter, other areas of application for optical clearing agents (OCAs) are presented. The osmotic properties of agents are highly important in dermatology, cosmetics, and pharmacology, if topical application to the skin is desired. After addressing this application in Sect. 8.2, tissue poisoning and discussing the osmotic properties of certain poisons or toxic compounds will be done in Sect. 8.3. The importance of evaluating the diffusion properties of those substances in the skin, eye, and other inner tissue is indicated as a tool for optimizing treatment or decontamination dosage and procedures. Section 8.4 is used to discuss the application of agents in food industry. The dehydration capabilities of certain agents, such as sodium chloride or glycerol, are presented, and the advantages of treating fruit, meat, or fish with sugars to improve their organoleptic properties during preservation are also presented. Finally, the application of OCAs for tissue or organ preservation is presented in Sect. 8.5, where some cases for preservation of eye tissues at room temperature made with glycerol will be discussed. The use of OCAs as cryoprotectants at low temperatures is also explained. In all these applications, we refer the applicability of the method described in Sect. 6.4 to evaluate the diffusion properties of water, poisons, or drugs for ex vivo tissue samples.


Optical clearing agents Dehydration Refractive index matching Poisons Cryogeny Food industry 


  1. 1.
    D.G. Cogan, Clearing of edematous corneas by glycerin. Am. J. Ophthalmol. 26(5), 551 (1943)CrossRefGoogle Scholar
  2. 2.
    K.C. Swan, A dehydrating jelly to clear corneal bedewing. AMA Arch. Ophthalmol. 50(1), 75–77 (1953)CrossRefGoogle Scholar
  3. 3.
    B. Duvall, R. Kershner, Ophthalmic Medications and Pharmacology, 2nd edn. (SLACK Inc., Thorofare, NJ, 2006), p. 42. Chapter 5Google Scholar
  4. 4.
    C. Costagliola, V. Romano, E. Forbice, M. Angi, A. Pascotto, T. Boccia, F. Semeraro, Corneal oedema and its medical treatment. Clin. Exp. Optom. 96, 529–535 (2013)CrossRefGoogle Scholar
  5. 5.
    D.M. Maurice, Clearing media for the eye. Br. J. Ophthalmol. 71, 470–472 (1987)CrossRefGoogle Scholar
  6. 6.
    V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2006)Google Scholar
  7. 7.
    H. Schaefer, T.E. Redelmeier, Skin Barrier: Principles of Percutaneous Absorption (Karger, Basel, 1996)Google Scholar
  8. 8.
    F. Pirot, Y.N. Kalia, A.L. Stinchcomb, G. Keating, A. Bunge, R.H. Guy, Characterization of the permeable barrier of human skin in vivo. Proc. Natl. Acad. Sci. 94, 1562–1567 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    I.H. Blank, J. Moloney, A.G. Emslie, I. Simon, C. Apt, The diffusion of water across the stratum corneum as a function of its water content. J. Invest. Dermatol. 82, 188–194 (1984)CrossRefGoogle Scholar
  10. 10.
    T. von Zglinicki, M. Lindberg, G.H. Roomans, B. Forslind, Water and ion distribution profiles in human skin. Acta Derm. Venerol. 73, 340–343 (1993)Google Scholar
  11. 11.
    J.M. Bradner, Importance of tight junctions in relation to skin barrier function. Curr. Probl. Dermatol. 49, 27–37 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Rutter, Drug absorption through the skin: a mixed blessing. Arch. Dis. Child. 62, 220–221 (1987)CrossRefGoogle Scholar
  13. 13.
    S. Mitragotri, Y.G. Anissimov, A.L. Bunge, H.F. Frasch, R.H. Guy, J. Hadgraft, G.B. Kasting, M.E. Lane, M.S. Roberts, Mathematical models of skin permeability: an overview. Int. J. Pharm. 418, 115–129 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Higuchi, Rate of release of medications from ointment bases containing drugs in suspension. J. Pharm. Sci. 50, 874–875 (1961)CrossRefGoogle Scholar
  15. 15.
    P. Schlupp, T. Blaschke, K.D. Kramer, H.-D. Höltje, W. Mehnert, M. Schäfer-Korting, Drug release and skin penetration from solid lipid nanoparticles and a base cream: a systematic approach from a comparison of three glucocorticoids. Skin Pharmacol. Physiol. 24, 199–209 (2011)CrossRefGoogle Scholar
  16. 16.
    H.A.E. Benson, Transdermal drug delivery: penetration enhancement techniques. Curr. Drug Deliv. 2, 23–33 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Hadgraft, J.W. Hadgraft, I. Sarkany, The effect of glycerol on the percutaneous absorption of methyl nicotinate. Br. J. Dermatol. 87(1), 30–36 (1972)CrossRefGoogle Scholar
  18. 18.
    N. Carreras, C. Alonso, M. Martí, M. Lis, Mass transport model through the skin by microencapsulation system. J. Microencapsul. 32(4), 358–363 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Davidson, B. Al-Qallaf, D.B. Das, Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chem. Eng. Res. Design 86(11), 1196–1206 (2008)CrossRefGoogle Scholar
  20. 20.
    L. Bartosova, J. Bajgar, Transdermal drug delivery in vitro using diffusion cells. Curr. Med. Chem. 19, 4671–4677 (2012)CrossRefGoogle Scholar
  21. 21.
    H. Rothe, C. Obringer, J. Manwaring, C. Avci, W. Wargniez, J. Eilstein, N. Hewitt, R. Cubberley, H. Duplan, D. Lange, C. Jacques-Jamin, M. Klaric, A. Schepky, S. Grégoire, Comparison of protocols measuring diffusion and partition coefficients in the stratum corneum. J. Appl. Toxicol. 37, 806–816 (2017)CrossRefGoogle Scholar
  22. 22.
    E.A. Genina, A.N. Bashkatov, A.A. Korobko, E.A. Zubkova, V.V. Tuchin, I. Yaroslavsky, G.B. Altshuler, Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt. 13(2), 021102 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    R. Pjanović, R. Stojanović, M. Šajber, J. Veljković, N. Bošković-Vragolović, S. Pejanović, Diffusion of lidocaine hydrochloride from lipid microparticles. Chem. Ind. Chem. Eng. Quart. 15(1), 33–35 (2009)CrossRefGoogle Scholar
  24. 24.
    A.Y. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademann, V.V. Tuchin, Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents- quantitative analysis using confocal Raman microscopy. J. Biophotonics 12, e201800283 (2019)CrossRefGoogle Scholar
  25. 25.
    K. Dennerlein, F. Kiesewetter, S. Kilo, T. Jäger, T. Göen, G. Korinth, H. Drexler, Dermal absorption and skin damage following hydrofluoric acid. Toxicol. Lett. 248, 25–33 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Thors, S. Lindberg, S. Johansson, M. Koch, L. Hägglund, A. Bucht, RSDL decontamination of human skin contaminated with the nerve agent VX. Toxicol. Lett. 269, 47–54 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Thors, M. Koch, E. Wingenstam, B. Koch, L. Hägglund, A. Bucht, Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin. Chem. Biol. Interact. 272, 82–89 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Cao, X. Hui, H. Zhu, A. Elmahdy, H. Maibach, In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using dermal decontamination gel (DDGEL) and reactive skin decontamination lotion (RSDL). Toxicol. Lett. 291, 86–91 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Gaskin, L. thredgold, L. Heath, D. Pisaniello, M. Logan, C. Baxter, Empirical data in support of a skin notation for methyl chloride. J. Occup. Environ. Hyg. 15(8), 569–572 (2018)CrossRefGoogle Scholar
  30. 30.
    R. van Doorn, P.J.A. Borm, C.M. Leijdekkers, P.T. Henderson, J. Reuvers, T.J. van Bergen, Detection and identification of S-methylcysteine in urine of workers exposed to methyl chloride. Int. Arch. Occup. Environ. Health 46(2), 99–109 (1980)CrossRefGoogle Scholar
  31. 31.
    Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Chloromethane (U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 1998)Google Scholar
  32. 32.
    D.R. Mattie, G.D. Bates Jr., G.W. Jepson, J.W. Fisher, J.N. McDougal, Determination of skin:air partition coefficients for volatile chemicals: experimental method and applications. Fundam. Appl. Toxicol. 22, 51–57 (1994)CrossRefGoogle Scholar
  33. 33.
    G. Maina, C. Gastagnoli, G. Ghione, V. Passini, G. Adami, F.L. Filon, M. Grosera, Skin contamination as pathway for nicotine intoxication in vapers. Toxicol. In Vitro 41, 102–105 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Gaskin, L. Heath, D. Pisaniello, R. Evans, J.W. Edwards, M. Logan, C. Baxter, Hydrogen sulphide and phosphine interactions with human skin in vitro: application to hazardous material incident decision making for skin decontamination. Toxicol. Ind. Health 33(4), 289–296 (2017)CrossRefGoogle Scholar
  35. 35.
    T.Y.K. Chan, Aconite poisoning following the percutaneous absorption of Aconitum alkaloids. Forensic Sci. Int. 223, 25–27 (2012)CrossRefGoogle Scholar
  36. 36.
    K.S. Park, J.H. Kwon, S.H. Park, W. Ha, J. Lee, H.C. An, Y. Kim, Acute copper sulfate poisoning resulting from dermal absorption. Am. J. Ind. Med. 61, 783–788 (2018)CrossRefGoogle Scholar
  37. 37.
    S.-K. Han, S.-R. Yeom, S.H. Lee, S.-C. Park, H.-B. Kim, Y.-M. Cho, S.W. Park, A fatal case of chlorfenapyr poisoning following dermal exposure. Hong Kong J. Emerg. Med., 1–4 (2018)Google Scholar
  38. 38.
    X. Guo, Z. Guo, H. Wei, H. Yang, Y. He, S. Xie, G. Wu, X. Deng, Q. Zhao, L. Li, In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography. Photochem. Photobiol. 87(3), 734–740 (2011)CrossRefGoogle Scholar
  39. 39.
    Z. Zhi, Z. Han, Q. Luo, D. Zhu, Improve optical clearing of skin in vitro with propylene glycol as a penetration enhancer. J. Innov. Opt. Health Sci. 2(3), 269–278 (2009)CrossRefGoogle Scholar
  40. 40.
    T.Y. Lim, R.L. Poole, N.M. Pageler, Propylene glycol toxicity in children. J. Pediatr. Pharmacol. Ther. 19(4), 277–282 (2014)Google Scholar
  41. 41.
    V.D. Genin, A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Measurement of diffusion coefficient of propylene glycol in skin tissue. Proc. SPIE 9448, 94480E (2015)ADSGoogle Scholar
  42. 42.
    A.A. Selifonov, V.V. Tuchin, Kinetics of optical properties on selected laser lines of human periodontal gingiva when exposed to glycerol-propylene glycol mixture, in International Symposium FLAMN-19 (Fundamentals of Laser Assisted Micro- & Nanotechnologies), Symposium Program, Paper PS3-C02-9, St. Petersburg, 30 June–4 July, 2019, p.71.
  43. 43.
    S.D. Sheffer, H.L.R. Cooper, N. Pologruto, Delivery of pharmaceutical active ingredients through the skin and hair follicles into dermis and transdermal delivery, US Patent No. US2016/0361264 A1, 15 Dec 2016Google Scholar
  44. 44.
    E.A. Genina, Y.I. Svenskaya, I.Y. Yanina, L.E. Dolotov, N.A. Navolokin, A.N. Bashkatov, G.S. Terentyuk, A.B. Bucharskaya, G.N. Maslyakova, D.A. Gorin, V.V. Tuchin, G.B. Sukhorukov, In vivo optical monitoring of transcutaneous delivery of calcium carbonate microcontainers. Biomed. Opt. Express 7(6), 2082–2087 (2016)CrossRefGoogle Scholar
  45. 45.
    I.Y. Yanina, N.A. Navolokin, Y.I. Svenskaya, A.B. Bucharskaya, G.N. Maslyakova, D.A. Gorin, G.B. Sukhorukov, V.V. Tuchin, Morphology alterations of skin and subcutaneous fat at NIR laser irradiation combined with delivery of encapsulated indocyanine green. J. Biomed. Opt. 22(5), 055008 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    Y.I. Svenskaya, E.A. Genina, B.V. Parakhonskiy, E.V. Lengert, E.E. Talnikova, G.S. Terentyuk, S.R. Utz, D.A. Gorin, V.V. Tuchin, G.B. Sukhorukov, A simple non-invasive approach toward efficient transdermal drug delivery based on biodegradable particulate system. ACS Appl. Mater. Interfaces 11(19), 17270–17282 (2019)CrossRefGoogle Scholar
  47. 47.
    S.R. White, Toxic alcohols, in Rosen’s Emergency Medicine: Concepts and Clinical Practice, ed. by J. A. Marx, R. S. Hockberger, R. M. Walls, vol. 2, 7th edn., (Elsevier, Philadelphia, PA, 2010), pp. 2001–2009CrossRefGoogle Scholar
  48. 48.
    L.M. Oliveira, M.I. Carvalho, E.N. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    S. Seidl, B. Schwarze, P. Betz, Lethal cyanide inhalation with post-mortem trans-cutaneous cyanide diffusion. Leg. Med. 5, 238–241 (2003)CrossRefGoogle Scholar
  50. 50.
    P. Rayar, S. Ratnaplan, Pediatric ingestions of house hold products containing ethanol: a review. Clin. Pediatr. 52(3), 203–209 (2012)CrossRefGoogle Scholar
  51. 51.
  52. 52.
    S.S. Konstantinović, B.R. Danilović, J.T. Ćirić, S.B. Ilić, D.S. Savić, V.B. Veljković, Valorization of crude glycerol from biodiesel production. Chem. Ind. Chem. Eng. Q. 22(4), 461–489 (2016)CrossRefGoogle Scholar
  53. 53.
    V.K. Garlapati, U. Shankar, A. Budhiraja, Bioconversion technologies of crude glycerol to value added industrial products. Biotech. Rep. 9, 9–14 (2016)CrossRefGoogle Scholar
  54. 54.
    F. Hernández, M. Ibáñez, J.V. Sancho, Fast determination of toxic diethylene glycol in toothpaste by ultra-performance liquid chromatography – time of flight mass spectrometry. Anal. Bioanal. Chem. 391, 1021–1027 (2008)CrossRefGoogle Scholar
  55. 55.
    S. Barry, J.-C. Wolff, Investigation into the quantitative analysis of diethylene glycol in toothpaste by direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 30, 1829–1834 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    M. Özgöz, H. Yaǧiz, Y. Çiçek, A. Tezel, Gingival necrosis following the use of a paraformaldehyde-containing paste: a case report. Int. Endod. J. 37, 157–161 (2004)CrossRefGoogle Scholar
  57. 57.
    G.N. Teke, N.G. Enongene, A.R. Tiagha, In vitro antimicrobial activity of some commercial toothpastes. Int. J. Curr. Microb. Appl. Sci. 6(1), 433–446 (2017)CrossRefGoogle Scholar
  58. 58.
    B.V. Vannet, B. De Wever, E. Adriaens, F. Ramaeckers, P. Bottenberg, The evaluation of sodium lauryl sulphate in toothpaste on toxicity on human gingiva and mucosa: a 3D in vitro model. Dentistry 5(9), 325-1–325-5 (2015)Google Scholar
  59. 59.
    B. Cvikl, A. Lussi, R. Gruber, The in vitro impact of toothpaste extracts on cell viability. Eur. J. Oral Sci. 123, 179–185 (2015)CrossRefGoogle Scholar
  60. 60.
    M. Ersoy, J. Tanalp, E. Ozel, R. Cengizlier, M. Soyman, The allergy of toothpaste: a case report. Allergol. Immunopathol. 36(6), 368–370 (2008)CrossRefGoogle Scholar
  61. 61.
    T.H. Figueiredo, J.P. Apland, M.F.M. Braga, A.M. Marini, Acute and long-term consequences of exposure to organophosphate nerve agents in humans. Epilepsia 59(S2), 92–99 (2018)CrossRefGoogle Scholar
  62. 62.
    L. Schenk, K. Feychting, A. Annas, M. Öberg, Records from the Swedish poisons centre as a means for surveillance of occupational accidents and incidents with chemicals. Safety Sci. 104, 269–275 (2018)CrossRefGoogle Scholar
  63. 63.
    P.D. Creswell, J.G. Meiman, H. Nehls-Lowe, C. Vogt, R.J. Wozniak, M.A. Werner, H. Anderson, Exposure to elevated carbon monoxide levels at an indoor ice arena – Wisconsin, 2014. Morb. Mortal. Wkly. Rep. 64(45), 1267–1270 (2015)CrossRefGoogle Scholar
  64. 64.
    T. Kojima, M. Dogru, A. Higuchi, T. Nagata, O.M.A. Ibrahim, T. Inaba, K. Tsubota, Protection from acute tobacco smoke exposure evidence from Nrf2 knockout mice. Am. J. Pathol. 185(3), 776–785 (2015)CrossRefGoogle Scholar
  65. 65.
    N.J. Kleiman, A.M. Quinn, K.G. Fields, V. Slavkovich, J.H. Graziano, Arsenite accumulation in the mouse eye. J. Toxicol. Environ. Health A 79(8), 339–341 (2016)CrossRefGoogle Scholar
  66. 66.
    C. Ratti, Hot air and freeze-drying of high-value foods: a review. J. Food Eng. 49, 311–319 (2001)CrossRefGoogle Scholar
  67. 67.
    M.R. Khan, Osmotic dehydration technique for fruits preservation – a review. Pak. J. Food Sci. 22(2), 71–85 (2012)ADSGoogle Scholar
  68. 68.
    R.S.F. Filho, R.P. Gusmão, W.P. Silva, J.P. Gomes, E.V.C. Filho, A.A. El-Aouar, Osmotic dehydration of pineapple stems in hypertonic sucrose solutions. Agric. Sci. 6, 916–924 (2015)Google Scholar
  69. 69.
    A. Ciurzyńska, H. Kowalska, K. Czajkowska, A. Lenart, Osmotic dehydration in production of sustainable and healthy food. Tends Food Sci. Tech. 50, 186–192 (2016)CrossRefGoogle Scholar
  70. 70.
    I. Ahmed, I.M. Qazi, S. Jamal, Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. Emerg. Technol. 34, 29–43 (2016)CrossRefGoogle Scholar
  71. 71.
    M.S. Rahman, Osmotic dehydration of foods. Chapter 19, in Handbook of Food Preservation, ed. by M. S. Rahman, 2nd edn., (Taylor & Francis Group LLC, CRC Press, Boca Raton, FL, 2007), pp. 433–446CrossRefGoogle Scholar
  72. 72.
    G. Bidaisee, N. Badrie, Osmotic dehydration of cashew apples (Anacardium occidentale L.): quality evaluation of candied cashew apples. Int. J. Food Sci. Technol. 36, 71–78 (2001)CrossRefGoogle Scholar
  73. 73.
    M.H. Kim, R.T. Toledo, Effect of osmotic dehydration and high temperature fluidized bed drying on properties of dehydrated rabbit eye blueberries. J. Food Sci. 52(4), 980–989 (1987)CrossRefGoogle Scholar
  74. 74.
    D. Torreggiani, Technical aspects of osmotic dehydration in foods, in Food Preservation by Moisture Control. Fundamentals and Applications, ed. by G. V. Barbosa-Canovas, J. Welti-Chanes, (Technomic Publishing, Lancaster, PA, 1995), pp. 281–304Google Scholar
  75. 75.
    F.K. Ertekin, T. Cakaloz, Osmotic dehydration of peas II. Influence of osmosis on drying behavior and product quality. J. Food Process. Preserv. 20, 105–119 (1996)CrossRefGoogle Scholar
  76. 76.
    U. Erle, H. Schubert, Combined osmotic and microwave-vacuum dehydration of apples and strawberries. J. Food Eng. 49, 193–199 (2001)CrossRefGoogle Scholar
  77. 77.
    A. Chiralt, P. Fito, J.M. Barat, A. Andrés, C. González-Martínez, I. Escriche, M.M. Camacho, Use of vacuum impregnation in food salting process. J. Food Eng. 49, 141–151 (2001)CrossRefGoogle Scholar
  78. 78.
    S.M. Monnerat, T.R.M. Pizzi, M.A. Mauro, F.C. Menegalli, Osmotic dehydration of apples in sugar/salt solutions: concentration profiles and effective diffusion coefficients. J. Food Eng. 100, 604–612 (2010)CrossRefGoogle Scholar
  79. 79.
    H.G. Ramya, S. Kumar, S. Kapoor, Optimization of osmotic dehydration process for oyster mushrooms (Pleurotus sajor-caju) in sodium chloride solution using RSM. J. Appl. Nat. Sci. 6(1), 152–158 (2014)CrossRefGoogle Scholar
  80. 80.
    C.C. Ferrari, M.D. Hubinger, Evaluation of the mechanical properties and diffusion coefficients of osmodehydrated melon cubes. Int. J. Food Sci. Technol. 43, 2065–2074 (2008)CrossRefGoogle Scholar
  81. 81.
    P.M. Azoubel, F.E.X. Murr, Mass transfer kinetics of osmotic dehydration of cherry tomato. J. Food Eng. 61, 291–295 (2004)CrossRefGoogle Scholar
  82. 82.
    A.K. Yadav, S.V. Singh, Osmotic dehydration of fruits and vegetables: a review. J. Food Sci. Technol. 51(9), 1654–1673 (2014)CrossRefGoogle Scholar
  83. 83.
    I. Carneiro, S. Carvalho, R. Henrique, L.M. Oliveira, V.V. Tuchin, A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophotonics 12, e201800333 (2019). Scholar
  84. 84.
    S.K. Jain, R.C. Verna, L.K. Murdia, H.K. Jain, Optimization of process parameters for osmotic dehydration of papaya cubes. J. Food Sci. Technol. 48(2), 211–217 (2011)CrossRefGoogle Scholar
  85. 85.
    D. Tiroutchevalme, V. Sivakumar, J.P. Maran, Mass transfer kinetics during osmotic dehydration of AMLA (Emblica officinalis L.) cubes in sugar solution. Chem. Ind. Chem. Eng. Q. 21(4), 547–559 (2015)CrossRefGoogle Scholar
  86. 86.
    N.K. Rastigi, K.S.M.S. Raghavarao, Function of temperature and concentration during osmotic dehydration. J. Food Eng. 34, 429–440 (1997)CrossRefGoogle Scholar
  87. 87.
    I. Filipović, B. Ćurčić, V. Filipović, M. Nićetin, J. Filipović, V. Knežević, The effects of technological parameters on chicken meat osmotic dehydration process efficiency. J. Food Process. Preserv. 41, e13116-1–e13116-7 (2016)Google Scholar
  88. 88.
    N.L. Flores-Martínez, M.C.I. Pérez-Pérez, J.M. Oliveros-Muñoz, M.L. López-González, H. Jiménez-Islas, Estimation of diffusion coefficients of essential oil of Pimenta dioica in edible films formulated with aloe vera and gelatin, using Levenberg-Marquardt method. Rev. Mexicana de Ingeniería Química 17(2), 485–506 (2018)CrossRefGoogle Scholar
  89. 89.
    M. Hadipernata, M. Ogawa, Mass transfer and diffusion coefficient of D-Allulose during osmotic dehydration. J. Appl. Food Technol. 3(2), 6–10 (2016)Google Scholar
  90. 90.
    D. Dimakopoulou-Papazoglou, E. Katsanidis, Mass transfer kinetics during osmotic processing of beef meat using ternary solutions. Food Bioprod. Process. 100, 560–569 (2016)CrossRefGoogle Scholar
  91. 91.
    Sangeeta, B.S. Hathan, Studies on mass transfer and diffusion coefficients in elephant foot yam (Amorphophallus SPP.) during osmotic dehydration in sodium chloride solution. J. Food Process Preserv. 40, 521–530 (2016)CrossRefGoogle Scholar
  92. 92.
    J.H. King, W.M. Townsend, The prolonged storage of donor corneas by glycerine dehydration. Trans. Am. Ophthalmol. Soc. 82, 106–110 (1984)Google Scholar
  93. 93.
    N. Gupta, P. Upadhyay, Use of glycerol-preserved corneas for corneal transplants. Ind. J. Ophthalmol. 65, 569–573 (2017)CrossRefGoogle Scholar
  94. 94.
  95. 95.
    M.R. Herson, K. Hamilton, J. White, D. Alexander, S. Poniatowski, A.J. O’Connor, J.A. Werkmeiter, Interaction of preservation methods and radiation sterilization in human skin processing, with particular insight on the impact of the final water content and collagen disruption. Part I: process validation, water activity and collagen changes in tissues cryopreserved or processed using 50, 85 or 98% glycerol solutions. Cell Tissue Bank. 19, 215–217 (2018)CrossRefGoogle Scholar
  96. 96.
    F.A. Elnady, The Elnady technique: an innovative new method for tissue preservation. ALTEX 33(3), 237–242 (2016)Google Scholar
  97. 97.
    B. Wowk, How cryoprotectants work. Cryonics 28(3), 3–7 (2007). ed. by J. Chapman, Alcor Life Extension Foundation, Scottsdale, AZGoogle Scholar
  98. 98.
    M.S.I. Siddiqui, M. Giasuddin, S.M.Z.H. Chowdhury, M.R. Islam, E.H. Chowdhury, Comparative effectiveness of dimethyl sulphoxide (DMSO) and glycerol as cryoprotective agent in preserving Vero cells. Bangl. Veterin. 32(2), 35–41 (2015)CrossRefGoogle Scholar
  99. 99.
    R. Chen, B. Wang, Y. Liu, R. Lin, J. He, D. Li, A study of cryogenic tissue-engineered liver slices in calcium alginate gel for drug testing. Cryobiology 82, 1–7 (2018)CrossRefGoogle Scholar
  100. 100.
    G.M. Fahy, D.R. MacFarlane, C.A. Angell, H.T. Meryman, Vitrification as an approach to cryopreservation. Cryobiology 21(4), 407–426 (1984)CrossRefGoogle Scholar
  101. 101.
    G.D. Elliot, S. Wang, B.J. Fuller, Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76, 74–91 (2017)CrossRefGoogle Scholar
  102. 102.
    P. Kilbride, G.J. Morris, Viscosities encountered during the cryopreservation of dimethyl sulphoxide systems. Cryobiology 76, 92–97 (2017)CrossRefGoogle Scholar
  103. 103.
    X. Zhou, X.M. Liang, J. Wang, P. Du, D. Gao, Theoretical and experimental study of a membrane-based microfluidics for loading and unloading cryoprotective agents. Int. J. Heat Mass Transfer 127, 637–644 (2018)CrossRefGoogle Scholar
  104. 104.
    T.A. Takroni, H. Yu, L. Laouar, A.B. Adesida, J.A.W. Elliott, N.M. Jomha, Ethylene glycol and glycerol loading and unloading in porcine meniscal tissue. Cryobiology 74, 50–60 (2017)CrossRefGoogle Scholar
  105. 105.
    A. Abazari, J.A.W. Elliott, L.E. McGann, R.B. Thompson, MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions. Osteoart. Cartil. 20, 1004–1010 (2012)CrossRefGoogle Scholar
  106. 106.
    J.D. Benson, A.Z. Higgins, K. Desai, A. Eroglu, A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80, 144–155 (2018)CrossRefGoogle Scholar
  107. 107.
    J.G. Alvarez, B.T. Storey, Evidence that membrane stress contributes more than lipid peroxidation to sublethal cryodamage in cryopreserved human sperm: glycerol and other polyols as sole cryoprotectant. J. Androl. 14(3), 199–209 (1993)Google Scholar
  108. 108.
    G.D.A. Gastal, B.G. Alves, K.A. Alves, S.O. Paiva, S.G.S. de Tarso, G.M. Ishak, S.T. Bashir, E.L. Gastal, Effects of cryoprotectant agents on equine ovarian biopsy fragments in preparation for cryopreservation. J. Equine Vet. Sci. 53, 86–93 (2017)CrossRefGoogle Scholar
  109. 109.
    D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, Q. Luo, V.V. Tuchin, Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. J. Biophotonics 8(4), 332–346 (2015)CrossRefGoogle Scholar
  110. 110.
    G. Spieles, T. Marx, I. Heschel, G. Rau, Analysis of desorption and diffusion during secondary drying in vacuum freeze-drying of hydroxyethyl starch. Chem. Eng. Process. 34, 351–357 (1995)CrossRefGoogle Scholar
  111. 111.
    L. Weng, S.L. Stott, M. Toner, Exploring dynamics and structure of biomolecules, cryoprotectants, and water using molecular dynamics simulations: implications for biostabilization and biopreservation. Ann. Rev. Biomed. Eng. 21, 1–31 (2019)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luís Manuel Couto Oliveira
    • 1
  • Valery Victorovich Tuchin
    • 2
    • 3
    • 4
    • 5
  1. 1.Physics Department and Center for Innovation in Engineering and Industrial TechnologyPolytechnic Institute of Porto – School of EngineeringPortoPortugal
  2. 2.Department of Optics and BiophotonicsSaratov State UniversitySaratovRussia
  3. 3.Institute of Precision Mechanics and Control of the RASSaratovRussia
  4. 4.Bach Institute of BiochemistryResearch Center of Biotechnology of the RASMoscowRussia
  5. 5.Tomsk State University, Tomsk & ITMO UniversitySt. PetersburgRussia

Personalised recommendations