Skip to main content

Measurements During Optical Clearing

  • Chapter
  • First Online:
The Optical Clearing Method

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

There are several types of measurements that can be performed with biological tissues during optical clearing treatments. When analyzing these methods, two major modes of study must be provided: ex vivo and in vivo. Measurements made from ex vivo samples are more flexible, allowing, for instance, to measure tissue transmittance or sample thickness kinetics. The results obtained from these measurements do not mimic exactly the in vivo situation. In the case of in vivo tissues, results from measurements are more realistic, but a more restrict number is possible, based only on reflectance or imaging methods. In this chapter, we make a brief description and analysis of the various measurement procedures that can be made during treatments of tissues ex vivo and in vivo and present some studies where important information was collected. The valuable results already obtained or possible to obtain in future from measurements described here will be presented and explained in the following sections. A particular case with great interest not only for biophotonics but also for food industry or organ preservation is the estimation of the diffusion properties of water and agents. Such evaluation of parameters is based only on collimated transmittance and thickness measurements made from ex vivo tissues. We will describe these measurements here and exploit their use in the study of diffusion in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, Phase measurement of light absorption and scatterer in human tissue. Rev. Sci. Instrum. 69(10), 3457–3481 (1998)

    Article  ADS  Google Scholar 

  2. A.V. Priezzhev, V.V. Tuchin, L.P. Shubochkin, Laser Diagnostics in Biology and Medicine (Nauka, Moscow, 1989)

    Google Scholar 

  3. V.V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd edn. (Saratov University Press, Saratov, 2010)

    Google Scholar 

  4. V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, 2006)

    Google Scholar 

  5. V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd edn. (SPIE Press, Bellingham, 2015)

    Book  Google Scholar 

  6. L. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Optical clearing mechanisms characterization in muscle. J. Innov. Opt. Health Sci. 9(5), 1650035 (2016)

    Article  Google Scholar 

  7. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, et al., IEEE J. Sel. Top. Quant. Electron. 25(1), 7200608 (2019)

    Article  Google Scholar 

  8. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophotonics 12(4), e201800333 (2019)

    Article  Google Scholar 

  9. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Glucose diffusion in colorectal mucosa – a comparative study between normal and cancer tissues. J. Biomed. Opt. 22(9), 091506 (2017)

    Article  ADS  Google Scholar 

  10. A.N. Bashkatov, K.V. Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Y. Yanina, O.S. Zhernovaya, V.V. Tuchin, Measurements of tissue optical properties in the context of tissue optical clearing. J. Biomed. Opt. 23(9), 091416 (2018)

    Article  ADS  Google Scholar 

  11. L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Skeletal muscle dispersion (400–1000 nm) and kinetics at optical clearing. J. Biophotonics 11(1), e201700094 (2018)

    Article  Google Scholar 

  12. I. Carneiro, S. Carvalho, V. Silva, R. Henrique, L. Oliveira, V.V. Tuchin, Kinetics of optical properties of human colorectal tissues during optical clearing: a comparative study between normal and pathological tissues. J. Biomed. Opt. 23(12), 121620 (2018)

    Article  ADS  Google Scholar 

  13. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm, in Dynamics and Fluctuations in Biomedical Photonics XIV, Proc. of SPIE, ed. by V. V. Tuchin, K. V. Larin, M. J. Leahy, R. K. Wang, vol. 10063, (SPIE Press, Bellingham, 2017), p. 100631L. https://doi.org/10.1117/12.2253023

    Chapter  Google Scholar 

  14. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Optical properties of colorectal muscle in visible/NIR range, in Biophotonics: Photonic Solutions for Better Health Care VI, Proc. of SPIE, ed. by J. Popp, V. V. Tuchin, F. S. Pavone, vol. 10685, (SPIE Press, Bellingham, 2018), p. 106853D. https://doi.org/10.1117/12.2306586

    Chapter  Google Scholar 

  15. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Measuring optical properties of human liver between 400 and 1000 nm. Quant. Electron. 49(1), 13–19 (2019)

    Article  ADS  Google Scholar 

  16. A.N. Bashkatov, E.A. Genina, M.D. Kosintseva, V.I. Koshubey, S.Y. Gorodkov, V.V. Tuchin, Optical properties of peritoneal biological tissues in the range of 350–2500 nm. Opt. Spectrosc. 120(1), 1–8 (2016)

    Article  ADS  Google Scholar 

  17. A.N. Bashkatov, E.A. Genina, V.I. Koshubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005)

    Article  ADS  Google Scholar 

  18. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, E.A. Kolesnikova, V.V. Tuchin, Optical properties of human colon tissues in the 350–2500 spectral range. Quant. Electron. 44(8), 779–784 (2014)

    Article  ADS  Google Scholar 

  19. L.-H. Wang, S.L. Jacques, L.-Q. Zheng, MCML – Monte Carlo modeling of photon transport in multi-layered tissues. Comput. Met. Progr. Biomed. 47(2), 131–146 (1995)

    Article  Google Scholar 

  20. S.A. Prahl, M.J.C. Van Gemert, A.J. Welch, Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt. 32(4), 559–568 (1993)

    Article  ADS  Google Scholar 

  21. S. Peña-Llopis, J. Brugarolas, Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications. Nat. Protoc. 8(11), 2240–2255 (2013)

    Article  Google Scholar 

  22. R.R. Anderson, J.A. Parish, Optical properties of human skin, in The Science of Photomedicine, ed. by J. D. Regan, J. A. Parish, (Plenum Press, New York, 1982), pp. 147–194

    Chapter  Google Scholar 

  23. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer. J. Biomed. Photon. Eng. 2(4), 040307 (2016)

    Article  Google Scholar 

  24. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Water content and scatterers dispersion evaluation in colorectal tissues. J. Biomed. Photon. Eng. 3(4), 040301 (2017)

    Article  Google Scholar 

  25. H. Ding, J.Q. Lu, W.A. Wooden, P.J. Kragel, X.H. Hu, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys. Med. Biol. 51(6), 1479–1489 (2006)

    Article  Google Scholar 

  26. Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, J. Tian, Determination of continuous complex refractive index dispersion of biotissue based on internal reflection. J. Biomed. Opt. 21(1), 015003 (2016)

    Article  ADS  Google Scholar 

  27. S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, J. Tian, Measurement of the refractive index of whole blood and its components for a continuous spectral region. J. Biomed. Opt. 24(3), 035003 (2019)

    ADS  Google Scholar 

  28. X.U. Zhang, D.J. Faber, A.L. Post, T.G. van Leeuwen, H.J.C.M. Sterenborg, Refractive index measurement using single fiber reflectance spectroscopy. J. Biophoton. 12(7), e201900019 (2019)

    Google Scholar 

  29. G. Vargas, K.F. Chan, S.L. Thomsen, A.J. Welch, Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin. Laser Surg. Med. 29, 213–220 (2001)

    Article  Google Scholar 

  30. E.A. Genina, A.N. Bashkatov, A.A. Zubkova, V.V. Tuchin, I. Yaroslavsky, G.B. Altshuler, Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt. 13(2), 021102 (2008)

    Article  ADS  Google Scholar 

  31. D.K. Tuchina, A.N. Bashkatov, A.B. Bucharskaya, E.A. Genina, V.V. Tuchin, Study of glycerol diffusion in skin and myocardium ex vivo under the conditions of developing alloxan-induced diabetes. J. Biomed. Photon. Eng. 3(2), 020302 (2017)

    Article  Google Scholar 

  32. V.D. Genin, D.K. Tuchina, A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Polyethylene glycol diffusion in ex vivo skin tissue. AIP Conf. Proc. 1688, 030028 (2015)

    Article  Google Scholar 

  33. L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23, 075606 (2013)

    Article  ADS  Google Scholar 

  34. L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019 (2015)

    Article  ADS  Google Scholar 

  35. https://omlc.org/spectra/hemoglobin/. Accessed 8 July 2019

  36. L.D. Robertson, D. Roper, Laboratory methods used in the investigation of the haemolytic anaemias, in Dacie and Lewis Practical Haematology, ed. by B. J. Bain, I. Bates, M. A. Laffan, 11th edn., (Elsevier, Amsterdam, 2011)

    Google Scholar 

  37. G.M. Hale, M.R. Querry, Optical constants of water in the 200nm to 200 micron wavelength region. Appl. Opt. 12, 555–563 (1973)

    Article  ADS  Google Scholar 

  38. https://en.wikipedia.org/wiki/Methemoglobin. Accessed 8 July 2019

  39. https://en.wikipedia.org/wiki/Sulfhemoglobinemia. Accessed 8 July 2019

  40. G. Zonios, L.T. Perelman, V. Backman, R. Mahoharan, M. Fitzmaurice, J. van Dam, M.S. Feld, Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl. Opt. 38(31), 6628–6637 (1999)

    Article  ADS  Google Scholar 

  41. D.K. Tuchina, P.A. Timoshina, V.V. Tuchin, A.N. Bashkatov, E.A. Genina, Kinetics of rat skin optical clearing at topical application of 40%Glucose: ex vivo and in vivo studies. IEEE J. Sel. Top. Quant. Electron. 25(1), 7200508 (2019)

    Article  Google Scholar 

  42. G. Vargas, E.K. Chan, J.K. Barton, H.G. Rylander, A.J. Welch, Use of an agent to reduce scattering in skin. Laser Surg. Med. 24, 133–141 (1999)

    Article  Google Scholar 

  43. G. Einstein, P. Aruna, S. Ganesan, Monte Carlo based model for diffuse reflectance from turbid media for the diagnosis of epithelial dysplasia. Optik 181, 828–835 (2018)

    Article  ADS  Google Scholar 

  44. G. Einstein, K. Udayakumar, P.R. Aruna, D. Koteeswaran, S. Ganesan, Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer. Optik 127, 1479–1485 (2016)

    Article  ADS  Google Scholar 

  45. X. Wen, Z. Mao, Z. Han, V.V. Tuchin, D. Zhu, In vivo skin optical clearing by glycerol solutions: mechanism. J. Biophotonics 3(1–2), 44–52 (2010)

    Google Scholar 

  46. D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin, Recent progress in tissue optical clearing. Laser Photon. Rev. 7(5), 732–757 (2013)

    Article  ADS  Google Scholar 

  47. X. Xu, Q. Zhu, Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer. Opt. Commum. 279, 223–228 (2007)

    Article  ADS  Google Scholar 

  48. A. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademan, V.V. Tuchin, Recent progress in tissue optical clearing for spectroscopic application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 216–229 (2018)

    Article  ADS  Google Scholar 

  49. X. Xu, R. Wang, J.B. Elder, Optical clearing effect on gastric tissues immersed with biocompatible chemical agents investigated by near infrared reflectance spectroscopy. J. Phys. D Appl. Phys. 36, 1707–1713 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, L.M.C., Tuchin, V.V. (2019). Measurements During Optical Clearing. In: The Optical Clearing Method. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-33055-2_5

Download citation

Publish with us

Policies and ethics