Advertisement

Major Optical Clearing Mechanisms

  • Luís Manuel Couto Oliveira
  • Valery Victorovich Tuchin
Chapter
  • 156 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

The optical immersion clearing is an effective method to reduce light scattering in tissues, but to optimize each treatment, it is necessary to understand the mechanisms involved. Since these treatments are intended to be temporary, it is also important to know if the mechanisms involved are reversible. Various studies have been made to evaluate and characterize the mechanisms of optical clearing. In all cases studied, two major mechanisms were observed—the tissue dehydration and the refractive index matching mechanisms. Some particular studies have reported that the agents used in treatments also dissolve proteins and suggested that protein dissolution is also a clearing mechanism. All these mechanisms have been reported as reversible, both on ex vivo or on in vivo studies. We make an analysis on these studies and present a method based on ex vivo collimated transmittance and thickness measurements to characterize the major clearing mechanisms—tissue dehydration and refractive index matching. Although this method can only be made with ex vivo tissues, alternative measurements are suggested for in vivo characterization of the clearing mechanisms.

Keywords

Optical clearing agents Dehydration mechanism Refractive index matching Collagen solubility Water flux out OCA flux in 

References

  1. 1.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Skeletal muscle dispersion (400–1000 nm) and kinetics at optical clearing. J. Biophotonics 11(1), e201700094 (2018)CrossRefGoogle Scholar
  2. 2.
    V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Top. Quant. Electron. 5(4), 1019 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    I. Carneiro, S. Carvalho, V. Silva, R. Henrique, L. Oliveira, V.V. Tuchin, Kinetics of optical properties of human colorectal tissues during optical clearing: a comparative study between normal and pathological tissues. J. Biomed. Opt. 23(12), 121620 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, 2006)Google Scholar
  5. 5.
    L. Oliveira, A. Lage, M. Pais Clemente, V.V. Tuchin, Optical characterization and composition of abdominal wall muscle from rat. Opt. Lasers Eng. 47, 667–672 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Oliveira, A. Lage, M. Pais Clemente, V.V. Tuchin, Rat muscle opacity decrease due to the osmosis of a simple mixture. J. Biomed. Opt. 15(5), 055004 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Estimation of wavelength dependence of refractive index of collagen fibers of scleral tissue, in Controlling Tissue Optical Properties: Applications in Clinical Study, Proc. of SPIE, ed. by V. V. Tuchin, vol. 4162, (SPIE Press, Bellingham, 2000), pp. 265–268CrossRefGoogle Scholar
  8. 8.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Optical clearing mechanisms characterization in muscle. J. Innov. Opt. Health Sci. 9(5), 1650035 (2016)CrossRefGoogle Scholar
  9. 9.
    V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd edn. (SPIE Press, Bellingham, 2015)CrossRefGoogle Scholar
  10. 10.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J. Hirshburg, B. Choi, J.S. Nelson, A.T. Yeh, Correlation between collagen solubility and skin optical clearing using sugars. Laser. Surg. Med. 39, 140–144 (2007)CrossRefGoogle Scholar
  12. 12.
    E.A. Genina, A.N. Bashkatov, V.V. Tuchin, Tissue optical immersion clearing. Expert Rev. Med. Dev. 7(6), 825–842 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Cicchi, D. Sampson, D. Massi, F.S. Pavone, Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents. Opt. Express 13(7), 2337–2344 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    G. Vargas, E.K. Chan, J.K. Barton, H.G. Rylander, A.J. Welch, Use of an agent to reduce scattering in skin. Laser. Surg. Med. 24, 133–141 (1999)CrossRefGoogle Scholar
  15. 15.
    G. Vargas, J.K. Barton, A.J. Welch, Use of hyperosmotic chemical agent to improve the laser treatment of cutaneous vascular lesions. J. Biomed. Opt. 13(2), 021114 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    A.Y. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademan, V.V. Tuchin, Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents – quantitative analysis using confocal Raman microscopy. J. Biophotonics 12(5), e201800283 (2019)CrossRefGoogle Scholar
  17. 17.
    H. Zheng, J. Wang, Q. Ye, Z. Deng, J. Mei, W. Zhou, C. Zhang, J. Tian, Study on the refractive index matching effect of ultrasound on optical clearing of bio-tissues based on the derivative total reflection method. Biomed. Opt. Express 5(10), 3482–3493 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin, Recent progress in tissue optical clearing. Laser Photon. Rev. 7(5), 732–757 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    C.G. Rylander, O.F. Stumpp, T.E. Milner, N.J. Kemp, J.M. Mendenhall, K.R. Diller, A.J. Welch, Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt. 11(4), 041117 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    T. Yu, X. Wen, V.V. Tuchin, Q. Luo, D. Zhu, Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing. J. Biomed. Opt. 16(9), 095002 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Gurjarpadhye, W.C. Vogt, Y. Liu, C.G. Rylander, Effect of localized mechanical indentation on skin water content evaluated using OCT. Int. J. Biomed. Imaging 2011, 817250 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Tanaka, A. Kubota, M. Yamato, T. Okano, K. Nishida, Irreversible optical clearing of sclera by dehydration and cross-linking. Biomaterials 32, 1080–1090 (2011)CrossRefGoogle Scholar
  23. 23.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Kinetics of optical properties of colorectal muscle during optical clearing. IEEE J. Sel. Top. Quant. Electron 25(1), 7200608 (2019)CrossRefGoogle Scholar
  24. 24.
    B. Choi, L. Tsu, E. Chen, T.S. Ishak, S.M. Iskhandar, S. Chess, J.S. Nelson, Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg. Med. 36, 72–75 (2005)CrossRefGoogle Scholar
  25. 25.
    L. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23, 075606 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    E.A. Genina, A.N. Bashkatov, A.A. Korobko, E.A. Zubkova, V.V. Tuchin, I. Yaroslavsky, G.B. Altshuler, Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt. 13(2), 021102 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Mao, D. Zhu, Y. Hu, X. Wen, Z. Han, Influence of alcohols on the optical clearing effect of skin in vitro. J. Biomed. Opt. 13(2), 021104 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Yeh, B. Choi, J.S. Nelson, B.J. Tromberg, Reversible dissociation of collagen in tissues. J. Invest. Dermatol. 121, 1332–1335 (2003)CrossRefGoogle Scholar
  29. 29.
    J. Hirshburg, B. Choi, J.S. Nelson, A.T. Yeh, Collagen solubility correlates with skin optical clearing. J. Biomed. Opt. 11, 040501 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    J. Hirshburg, K.M. Ravikumar, W. Hwang, A.T. Yeh, Molecular basis for optical clearing of collagenous tissues. J. Biomed. Opt. 15(5), 055002 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    X. Wen, Z. Mao, Z. Han, V.V. Tuchin, D. Zhu, In vivo skin optical clearing by glycerol solutions: mechanism. J. Biophotonics 3, 44–52 (2010)CrossRefGoogle Scholar
  32. 32.
    V. Hovhannisyan, P.-S. Hu, S.-J. Chen, C.-S. Kim, C.-Y. Dong, Elucidation of the mechanisms of optical clearing in collagen tissue with multiphoton imaging. J. Biomed. Opt. 18(4), 046004 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophotonics 12(4), e201800333 (2019)CrossRefGoogle Scholar
  34. 34.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Simple multimodal optical technique for evaluation of free/bound water and dispersion of human liver tissue. J. Biomed. Opt. 22(12), 125002 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Glucose diffusion in colorectal mucosa – a comparative study between normal and cancer tissues. J. Biomed. Opt. 22(9), 091506 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    W. Feng, R. Shi, N. Ma, D.K. Tuchina, V.V. Tuchin, D. Zhu, Skin optical clearing potential of disaccharides. J. Biomed. Opt. 21(8), 081207 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    K. Schilling, V. Janve, Y. Gao, I. Stepniewska, B.A. Landman, A.W. Anderson, Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. NeuroImage 129, 185–197 (2016)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luís Manuel Couto Oliveira
    • 1
  • Valery Victorovich Tuchin
    • 2
    • 3
    • 4
    • 5
  1. 1.Physics Department and Center for Innovation in Engineering and Industrial TechnologyPolytechnic Institute of Porto – School of EngineeringPortoPortugal
  2. 2.Department of Optics and BiophotonicsSaratov State UniversitySaratovRussia
  3. 3.Institute of Precision Mechanics and Control of the RASSaratovRussia
  4. 4.Bach Institute of BiochemistryResearch Center of Biotechnology of the RASMoscowRussia
  5. 5.Tomsk State University, Tomsk & ITMO UniversitySt. PetersburgRussia

Personalised recommendations