Tissue Optics

  • Luís Manuel Couto Oliveira
  • Valery Victorovich Tuchin
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Light interaction with biological materials depends on the material’s optical properties. From those properties, the absorption and scattering coefficients are the most important, since they quantify how much of a light beam is attenuated when traveling inside a tissue. The scattering coefficient is known to be significantly higher than the absorption coefficient in biological materials, meaning that most of the light is scattered, turning optical methods in clinical practice limited. Such difference between the scattering and absorption coefficients is mainly due to a refractive index mismatch between tissue components and fluids. We explain this concept in the present chapter before introducing the technique that efficiently minimizes this effect in the following chapters.


Absorption coefficient Scattering coefficient Anisotropy factor Reduced scattering coefficient Light attenuation Light penetration depth Refractive index mismatch 


  1. 1.
    V.V. Tuchin, Tissue Optics – Light Scattering Methods and Instruments for Medical Diagnostics, 3rd edn. (SPIE Press, Bellingham, 2015)CrossRefGoogle Scholar
  2. 2.
    T. Vo-Dinh (Ed.). Biomedical Photonics Handbook, Chapter 2, 2nd edition, 1, CRC Press, Boca Raton, 2015Google Scholar
  3. 3.
    A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Optical properties of skin, subcutaneous and muscle tissues: a review. J. Innov. Opt. Health Sci. 4(1), 9–38 (2011)CrossRefGoogle Scholar
  4. 4.
    S.L. Jacques, Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11), R37–R61 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, A.A. Gavrilova, S.V. Kapralov, V.A. Grishaev, V.V. Tuchin, Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology. Med. Laser Appl. 22(2), 95–104 (2007)CrossRefGoogle Scholar
  6. 6.
    I. Yariv, G. Rahamim, E. Shlieselberg, H. Duadi, A. Lipovsky, R. Lubart, D. Fixler, Detecting nanoparticles in tissue using an optical iterative technique. Biomed. Opt. Express 5(11), 3871–3881 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Zhou, J. Yao, L.V. Wang, Tutorial on photoacoustic tomography. J. Biomed. Opt. 21(6), 061007 (2016)ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
    S. Takatani, M.D. Graham, Theoretical analysis of diffuse reflectance from a two-layer tissue model. I.E.E.E. Trans. Biomed. Eng. BME-26, 656–664 (1987)Google Scholar
  10. 10.
    R.L. van Veen, H.J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, R. Cubeddu, Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. J. Biomed. Opt. 10(5), 054004 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    G.M. Hale, M.R. Querry, Optical constants of water in the 200nm to 200μm wavelength region. Appl. Opt. 12(3), 555–563 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    V.V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd edn. (Saratov University Press, Saratov, Russia, 2010)Google Scholar
  13. 13.
    V.V. Tuchin, S.R. Utz, I.V. Yaroslavsky, Tissue optics, light distribution and spectroscopy. Opt. Eng. 33(10), 3178–3188 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Skeletal muscle dispersion (400–1000 nm) and kinetics at optical clearing. J. Biophotonics 11(1), e201700094 (2018)CrossRefGoogle Scholar
  15. 15.
    C.T. Germer, A. Roggan, J.P. Ritz, C. Isbert, D. Albrecht, G. Müller, H.J. Buhr, Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Laser. Surg. Med. 23(4), 194–203 (1998)CrossRefGoogle Scholar
  16. 16.
    A.N. Yaroslavsky, P.C. Schultze, I.V. Yaroslavsky, R. Schober, F. Ulrich, H.-J. Schwarzmaier, Optical properties of selected native and coagulated human brain tissues in vitro in visible and near infrared spectral range. Phys. Med. Biol. 47(12), 2059–2073 (2002)CrossRefGoogle Scholar
  17. 17.
    W.-F. Cheong, S.A. Prahl, A.J. Welch, A review of the optical properties of biological tissues. IEEE J. Quant. Electron. 26(12), 2166–2185 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    A. Roggan, K. Dörschel, O. Minet, D. Wolff, G. Müller, The optical properties of biological tissue in the near infrared wavelength range – review and measurements, in Laser-Induced Interstitial Thermotherapy, ed. by G. Müller, A. Roggan, (SPIE Press, Bellingham, 1995), pp. 10–44Google Scholar
  19. 19.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm, in Dynamics and Fluctuations in Biomedical Photonics XIV, Proc. SPIE, ed. by V. V. Tuchin, K. V. Larin, M. J. Leahy, R. K. Wang, vol. 10063, (SPIE Press, Bellingham, 2017), p. 100631LCrossRefGoogle Scholar
  20. 20.
    I. Carneiro, S. Carvalho, R. Henrique, L.M. Oliveira, V.V. Tuchin, Optical properties of colorectal muscle in visible/NIR range, in Biophotonics: Photonic Solutions for Better Health Care VI, Proc. SPIE, ed. by J. Popp, V. V. Tuchin, F. S. Pavone, vol. 10685, (SPIE Press, Bellingham, 2018), p. 106853DGoogle Scholar
  21. 21.
    S.A. Prahl, M.J.C. van Gemert, A.J. Welch, Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt. 32(4), 559–568 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human sclera in spectral range 370–2500 nm. Opt. Spectrosc. 109(2), 197–204 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A.N. Bashkatov, E.A. Genina, M.D. Kozintseva, V.I. Kochubey, S.Y. Gorofkov, V.V. Tuchin, Optical properties of peritoneal biological tissues in the spectral range of 350–2500 nm. Opt. Spectrosc. 120(1), 1–8 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.S. Rubtsov, E.A. Kolesnikova, V.V. Tuchin, Optical properties of human colon tissues in the 350–2500 spectral range. Quant. Electron. 44(8), 779–784 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M. Firbank, M. Hiraoka, M. Essenpreis, D.T. Delpy, Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 38(4), 503–510 (1993)CrossRefGoogle Scholar
  26. 26.
    D.C. Sordillo, L.A. Sordillo, P.P. Sordillo, L. Shi, R. Alfano, Short wavelength infrared optical windows for evaluations of benign and malignant tissues. J. Biomed. Opt. 22(4), 045002-1–045002-7 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    L. Shi, A. Rodriguez-Contreras, R. Alfano, Transmission in near-infrared optical windows for deep brain imaging. J. Biophotonics 9(1–2), 38–43 (2016)CrossRefGoogle Scholar
  28. 28.
    L. Oliveira, The effect of optical clearing in the optical properties of skeletal muscle, PhD thesis, FEUP edições, Porto, Portugal, 2014Google Scholar
  29. 29.
    A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Measurement of glucose diffusion coefficients in human tissues, Chapter 19, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, ed. by V. V. Tuchin, (Taylor & Francis Group LLC, CRC Press, London, 2009), pp. 87–621Google Scholar
  30. 30.
    R.C. Haskell, F.D. Carlson, P.S. Blank, Form birefringence of muscle. Biophys. J. 56, 401–413 (1989)CrossRefGoogle Scholar
  31. 31.
    L. Oliveira, A. Lage, M. Pais Clemente, V.V. Tuchin, Optical characterization and composition of abdominal wall muscle from rat. Opt. Laser Eng. 47(6), 667–672 (2009)CrossRefGoogle Scholar
  32. 32.
    V.V. Tuchin, Tissue optics and photonics: biological tissue structures. J. Biomed. Phot. Eng. 1(1), 3–21 (2015)CrossRefGoogle Scholar
  33. 33.
    V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, 2006)Google Scholar
  34. 34.
    D.W. Leonard, K.M. Meek, Refractive indices of the collagen fibrils and extracellular material of the corneal stroma. Biophys. J. 72(3), 1382–1387 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    K.M. Meek, S. Dennis, S. Khan, Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys. J. 85(4), 2205–2212 (2003)CrossRefGoogle Scholar
  36. 36.
    K.M. Meek, D.W. Leonard, C.J. Connon, S. Dennis, S. Khan, Transparency, swelling and scarring in the corneal stroma. Eye 17(8), 927–936 (2003)CrossRefGoogle Scholar
  37. 37.
    O. Zhernovaya, O. Sydoruk, V.V. Tuchin, A. Douplik, The refractive index of human hemoglobin in the visible range. Phys. Med. Biol. 56(13), 4013–4021 (2011)CrossRefGoogle Scholar
  38. 38.
    R.F. Reinoso, B.A. Telfer, M. Rowland, Tissue water content in rats measured by desiccation. J. Pharmacol. Toxicol. Methods 38(2), 87–92 (1997)CrossRefGoogle Scholar
  39. 39.
    L. Oliveira, A. Lage, M. Pais Clemente, V.V. Tuchin, Rat muscle opacity decrease due to the osmosis of a simple mixture. J. Biomed. Opt. 15(5), 055004-1–055004-9 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    M. Daimon, A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 46, 3811–3820 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    W.L. Bragg, A.B. Pippard, The form birefringence of macromolecules. Acta Cryst 6, 865–867 (1953)CrossRefGoogle Scholar
  42. 42.
    R. Graaff, J.G. Aarnoudse, J.R. Zijp, P.M.A. Sloot, F.F. de Mul, J. Greve, M.H. Koelink, Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations. Appl. Opt. 31(10), 1370–1376 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    R. Splinter, B.A. Hooper, An Introduction to Biomedical Optics (Taylor and Francis, New York, 2007)Google Scholar
  44. 44.
    A.Y. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin, Recent progress in tissue clearing for spectroscopic application. Spectrochim. Acta A Mol Biomol. Spectrosc. 197, 216–229 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    E.A. Genina, A.N. Bashkatov, Y.P. Sinichkin, I.Y. Yanina, V.V. Tuchin, Optical clearing of biological tissues: prospects of application in medical diagnosis and phototherapy. J. Biomed. Photon. Eng. 1(1), 22–58 (2015)CrossRefGoogle Scholar
  46. 46.
    F. S. Pavone, P. J. Campagnola (eds.), Second Harmonic Generation Imaging (CRC Press, Boca Raton, 2014)Google Scholar
  47. 47.
    V. V. Tuchin (Ed.). Handbook of Optical Biomedical Diagnostics. 2nd ed., vols. 1 & 2, SPIE Press, Bellingham, 2016Google Scholar
  48. 48.
    A.F. Fercher, J.D. Briers, Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37(5), 326–330 (1981)ADSCrossRefGoogle Scholar
  49. 49.
    M.E. Darvin, H. Richter, Y.J. Zhu, M.C. Meinke, F. Knorr, S.A. Gonchukov, K. Koenig, J. Lademann, Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging. Quant. Electron. 44(7), 646–651 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    M. Ulricht, M. Klemp, M.E. Darvin, K. Konig, J. Lademann, M.C. Meinke, In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph. J. Biomed. Opt. 18(6), 061229 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    O.A. Smolyanskaya, I.J. Schelkanova, M.S. Kulya, E.L. Odlyanitskiy, I.S. Goryachev, A.N. Tcypkin, Y.V. Grachev, Y.G. Toropova, V.V. Tuchin, Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods. Biomed. Opt. Express 9(3), 1198–1215 (2018)CrossRefGoogle Scholar
  52. 52.
    L. Lim, B. Nichols, N. Rajaram, J.W. Tunnell, Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements. J. Biomed. Opt. 16(1), 011012 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    B. Broadbent, J. Tseng, R. Kast, T. Noh, M. Brusatori, S.N. Kalkanis, G.W. Auner, Shining light on neurosurgery diagnostics using Raman spectroscopy. J. Neurooncol. 130(1), 1–9 (2016)CrossRefGoogle Scholar
  54. 54.
    Z. Deng, J. wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, J. Tian, Determination of continuous complex refractive dispersion of biotissue based on internal reflection. J. Biomed. Opt. 21(1), 015003 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    H. Ding, J.Q. Lu, W.A. Wooden, P.J. Kragel, X.-H. Hu, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys. Med. Biol. 51(6), 1479–1489 (2006)CrossRefGoogle Scholar
  56. 56.
    H. Li, S. Xie, Measurement method of the refractive index of biotissue by total internal reflection. Appl. Opt. 35(10), 1793–1795 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Water content and scatterers dispersion evaluation in colorectal tissues. J. Biomed. Phot. Eng. 3(4), 040301-1–040301-10 (2017)Google Scholar
  58. 58.
    A. Vogel, C. Dlugos, R. Nuffer, R. Birngruber, Optical properties of human sclera, and their consequences for transscleral laser applications. Laser. Surg. Med. 11(4), 331–340 (1991)CrossRefGoogle Scholar
  59. 59.
    A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt. 4(1), 36–46 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D. Appl. Phys. 38(15), 2543–2555 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, V.V. Tuchin, Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. J. Biophotonics 8(4), 332–346 (2015)CrossRefGoogle Scholar
  62. 62.
    D.K. Tuchina, A.N. Bashkatov, A.B. Bucharskaya, E.A. Genina, V.V. Tuchin, Study of glycerol diffusion in skin and myocardium ex vivo under the conditions of developing alloxan-induced diabetes. J. Biomed. Phot. Eng. 3(2), 020302 (2017)CrossRefGoogle Scholar
  63. 63.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Glucose diffusion in colorectal mucosa: a comparative study between normal and cancer tissues. J. Biomed. Opt. 22(9), 091506 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23(7), 075606 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    D.A. Boas, A fundamental limitation of linearized algorithms for diffuse optical tomography. Opt. Express 1(13), 404–413 (1997)ADSCrossRefGoogle Scholar
  67. 67.
    C.L. Smithpeter, A.K. Dunn, A.J. Welch, R. Richards-Kortum, Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37(13), 2749–2754 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    V.V. Tuchin, I.L. Maksimova, D.A. Zimnyakov, I.L. Kon, A.H. Mavlutov, A.A. Mishin, Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2(4), 401–417 (1997)ADSCrossRefGoogle Scholar
  69. 69.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Moving tissue spectral window to the deep-UV via optical clearing. J. Biophot. (2019).
  70. 70.
    T. Fabritius, E. Alarousu, T. Prykäri, J. Hast, R. Myllylä, Characterization of optically cleared paper by optical coherence tomography. Quant. Electron. 36(2), 181–187 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    W. Spalteholz, Über das Durchsichtigmachen von menschlichen unde tierischen Präparaten und seine theoretichen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirszel, Leipzig, Germany, 1911)Google Scholar
  72. 72.
    W. Spalteholz, Über das Durchsichtigmachen von menschlichen unde tierischen Präparaten und seine theoretichen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirszel, Leipzig, Germany, 1914)Google Scholar
  73. 73.
    D.S. Richardson, J.W. Lichtman, Clarifying tissue clearing. Cell 162(2), 246–257 (2015)CrossRefGoogle Scholar
  74. 74.
    M. Aswendt, M. Schwarz, W.M. Abdelmoula, J. Dijkstra, S. Dedeurwaerdere, Whole-brain microscopy meets in vivo neuroimaging: techniques, benefits, and limitations. Mol. Imaging Biol. 19(1), 1–9 (2017)CrossRefGoogle Scholar
  75. 75.
    A. Azaripour, T. Lagerweij, C. Scharfbillig, A.E. Jadczac, B. Willershausen, C.J. Van Noorden, A survey of clearing techniques for 3D imaging of tissues with special reference to connective. Prog. Histochem. Cytochem. 51(2), 9–23 (2016)CrossRefGoogle Scholar
  76. 76.
    R.W. Cumley, J.F. Crow, A.B. Griffen, Clearing specimens for the demonstration of bone. Biotech. Histochem. 14, 7–11 (1939)Google Scholar
  77. 77.
    E.A. Genina, A.N. Bashkatov, V.V. Tuchin, Tissue optical immersion clearing. Expert Rev. Med. Dev. 7(6), 825–842 (2010)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luís Manuel Couto Oliveira
    • 1
  • Valery Victorovich Tuchin
    • 2
    • 3
    • 4
    • 5
  1. 1.Physics Department and Center for Innovation in Engineering and Industrial TechnologyPolytechnic Institute of Porto – School of EngineeringPortoPortugal
  2. 2.Department of Optics and BiophotonicsSaratov State UniversitySaratovRussia
  3. 3.Institute of Precision Mechanics and Control of the RASSaratovRussia
  4. 4.Bach Institute of BiochemistryResearch Center of Biotechnology of the RASMoscowRussia
  5. 5.Tomsk State University, Tomsk & ITMO UniversitySt. PetersburgRussia

Personalised recommendations