Skip to main content

Some Combinatorial Coincidences for Standard Representations of Affine Lie Algebras

  • Chapter
  • First Online:
Affine, Vertex and W-algebras

Part of the book series: Springer INdAM Series ((SINDAMS,volume 37))

  • 440 Accesses

Abstract

In this note we explain, in terms of finite dimensional representations of Lie algebras \(\mathfrak {sp}_{2\ell }\subset \mathfrak {sl}_{2\ell }\), a combinatorial coincidence of difference conditions in two constructions of combinatorial bases for standard representations of symplectic affine Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamović, D., Perše, O.: The vertex algebra \(M(1)^{+}\) and certain affine vertex algebras of level \(-1\), SIGMA 8, 040 (2012) 16 p

    Google Scholar 

  2. Baranović, I.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 2 standard modules for \(D_4^{(1)}\). Commun. Algebra 39, 1007–1051 (2011)

    Article  MathSciNet  Google Scholar 

  3. Baranović, I., Primc, M., Trupčević, G.: Bases of Feigin-Stoyanovsky’s type subspaces for \(C_\ell ^{(1)}\). Ramanujan J. 45, 265–289 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bourbaki, N.: Algèbre Commutative. Hermann, Paris (1961)

    MATH  Google Scholar 

  5. Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Ramanujan recursion and intertwining operators. Commun. Contemp. Math. 5, 947–966 (2003)

    Article  MathSciNet  Google Scholar 

  6. Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators. Ramanujan J. 12, 379–397 (2006)

    Article  MathSciNet  Google Scholar 

  7. Dong, C., Mason, G.: On quantum Galois theory. Duke Math. J. 86, 305–321 (1997)

    Article  MathSciNet  Google Scholar 

  8. Feigin, B., Jimbo, M., Loktev, S., Miwa, T., Mukhin, E.: Bosonic formulas for (k, l)-admissible partitions. Ramanujan J. 7, 485–517; Addendum to ‘Bosonic formulas for (k, l)-admissible partitions’. Ramanujan J. 7(2003), 519–530 (2003)

    Google Scholar 

  9. Feigin, B., Kedem, R., Loktev, S., Miwa, T., Mukhin, E.: Combinatorics of the \(\widehat{\mathfrak{s}l}_2\) spaces of coinvariants. Transform. Groups 6, 25–52 (2001)

    Article  MathSciNet  Google Scholar 

  10. Stoyanovsky, A.V., Feigin, B.L.: Functional models of the representations of current algebras, and semi-infinite Schubert cells, (Russian) Funktsional. Anal. i Prilozhen. 28(1), 68-90, 96 (1994); translation in Funct. Anal. Appl. 28(1), 55-72 (1994); preprint Feigin, B., Stoyanovsky, A.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, arXiv:hep-th/9308079, RIMS 942

  11. Feigin, E.: The PBW filtration. Represent. Theory 13, 165–181 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  13. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. Int. J. Modern Phys. A 7, 449-484 (Suppl. 1A, Proceedings of the RIMS Research Project 1991, “Infinite Analysis”, World Scientific, Singapore, (1992))

    Google Scholar 

  14. Lepowsky, J., Milne, S.: Lie algebraic approaches to classical partition identities. Adv. Math. 29, 15–59 (1978)

    Article  MathSciNet  Google Scholar 

  15. Lepowsky, J., Primc, M.: Structure of the Standard Modules for the Affine Lie Algebra \(A_1^{(1)}\), Contemporary Mathematics vol. 46. American Mathematical Society, Providence (1985)

    Google Scholar 

  16. Lepowsky, J., Wilson, R.L.: The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent. Math. 77, 199–290; II: The case \(A_1^{(1)}\), principal gradation. Invent. Math. 79(1985), 417–442 (1984)

    Article  MathSciNet  Google Scholar 

  17. Meurman, A., Primc, M.: Vertex operator algebras and representations of affine Lie algebras. Acta Appl. Math. 44, 207–215 (1996)

    Article  MathSciNet  Google Scholar 

  18. Meurman, A., Primc, M.: Annihilating fields of standard modules of \({sl}(2,\mathbb{C})\,\widetilde{}\) and combinatorial identities. Memoirs Am. Math. Soc. 137(652) (1999)

    Google Scholar 

  19. Primc, M.: Vertex operator construction of standard modules for \(A_n^{(1)}\). Pacific J. Math. 162, 143–187 (1994)

    Article  MathSciNet  Google Scholar 

  20. Primc, M.: Basic representations for classical affine Lie algebras. J. Algebra 228, 1–50 (2000)

    Article  MathSciNet  Google Scholar 

  21. Primc, M.: \((k,r)\)-admissible configurations and intertwining operators Lie algebras, vertex operator algebras and their applications. pp. 425-434. Contemporary Mathematics, vol. 442. American Mathematical Society, Providence (2007)

    Google Scholar 

  22. Primc, M.: Combinatorial bases of modules for affine Lie algebra \(B_2^{(1)}\). Cent. Eur. J. Math. 11, 197–225 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Primc, M., Šikić, T.: Combinatorial bases of basic modules for affine Lie algebras \(C_n^{(1)}\). J. Math. Phys. 57, 1–19 (2016)

    Article  MathSciNet  Google Scholar 

  24. Primc, M., Šikić, T.: Leading terms of relations for standard modules of \(C_{n}^{(1)}\). arXiv:math/1506.05026 (To appear in Ramanujan J)

  25. Siladić, I.: Twisted \({\mathfrak{s}l}(3,\mathbb{C})\,\widetilde{}\) -modules and combinatorial identities, Glasnik Matematički 52, 53-77 (2017). arXiv:math/0204042

    Article  MathSciNet  Google Scholar 

  26. Trupčević, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level \(1\) standard \(\tilde{\mathfrak{s}l}(\ell +1,\mathbb{C})\)-modules. Comm. Algebra 38, 3913–3940 (2010)

    Article  MathSciNet  Google Scholar 

  27. Trupčević, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \(\tilde{\mathfrak{s}l}(\ell +1,\mathbb{C})\)-modules. J. Algebra 322, 3744–3774 (2009)

    Article  MathSciNet  Google Scholar 

  28. Trupčević, G.: Bases of standard modules for affine Lie algebras of type \(C_\ell ^{(1)}\). Comm. Algebra 46, 3663–3673 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Croatian Science Foundation under the Project 2634 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund—the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Primc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Primc, M. (2019). Some Combinatorial Coincidences for Standard Representations of Affine Lie Algebras. In: Adamović, D., Papi, P. (eds) Affine, Vertex and W-algebras. Springer INdAM Series, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-030-32906-8_9

Download citation

Publish with us

Policies and ethics