Skip to main content

The Level One Zhu Algebra for the Heisenberg Vertex Operator Algebra

  • Chapter
  • First Online:
Affine, Vertex and W-algebras

Part of the book series: Springer INdAM Series ((SINDAMS,volume 37))

Abstract

The level one Zhu algebra for the Heisenberg vertex operator algebra is calculated, and implications for the use of Zhu algebras of higher level for vertex operator algebras are discussed. In particular, we show the Heisenberg vertex operator algebra gives an example of when the level one Zhu algebra, and in fact all its higher level Zhu algebras, do not provide new indecomposable non simple modules for the vertex operator algebra beyond those detected by the level zero Zhu algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamović, D., Milas, A.: On the triplet vertex algebra \(W(p)\). Adv. Math. 217, 2664–2699 (2008)

    Article  MathSciNet  Google Scholar 

  2. Adamovic, D., Milas, A.: The structure of Zhu’s algebras for certain \(W\)-algebras. Adv. Math. 227, 2425–2456 (2011)

    Article  MathSciNet  Google Scholar 

  3. Barron, K., Vander Werf, N., Yang, J.: Higher level Zhu algebras and modules for vertex operator algebras. J. Pure Appl. Alg. 223, 3295–3317 (2019)

    Article  MathSciNet  Google Scholar 

  4. Barron, K., Vander Werf, N., Yang, J.: The level one Zhu algebra for the vertex operator algebra associated to the Virasoro algebra and implications. In: Krauel, M., Tuite, M., Yamskulna, G. (eds.) Vertex Operator Algebras, Number Theory, and Related Topics (To appear). Contemporary Mathematics. American Mathematical Society, Providence

    Google Scholar 

  5. Dong, C., Li, H., Mason, G.: Vertex operator algebras and associative algebras. J. Alg. 206, 67–98 (1998)

    Article  MathSciNet  Google Scholar 

  6. Frenkel, I., Zhu, Y.-C.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MathSciNet  Google Scholar 

  7. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations, Progress in Math, vol. 227. Birkhäuser, Boston (2003)

    Google Scholar 

  8. Milas, A.: Logarithmic intertwining operators and vertex operators. Commun. in Math. Phys. 277, 497–529 (2008)

    Article  MathSciNet  Google Scholar 

  9. Miyamoto, M.: Modular invariance of vertex operator algebras satisfying \(C_2\)-cofiniteness. Duke Math. J. 122, 51–91 (2004)

    Article  MathSciNet  Google Scholar 

  10. Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra \(\cal{W}(p)\) and the restricted quantum group at root of unity. Exploring New Structures and Natural Constructions in Mathematical Physics. Advanced Studies in Pure Mathematics, vol. 61, p. 149. Mathematical Society of Japan, Tokyo (2011)

    Google Scholar 

  11. Tsuchiya, A., Wood, S.: The tensor structure on the representation category of the \(\cal{W}_p\) triplet algebra. J. Phys. A: Math. Theor. 46, 445203 (2013)

    Article  Google Scholar 

  12. Zhu, Y.-C.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Darlayne Addabbo and Kiyo Nagatomo for reading a draft of this paper and making comments, suggestions, and corrections. The first author is the recipient of a Simons Foundation Collaboration Grant 282095, and greatly appreciates their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina Barron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barron, K., Vander Werf, N., Yang, J. (2019). The Level One Zhu Algebra for the Heisenberg Vertex Operator Algebra. In: Adamović, D., Papi, P. (eds) Affine, Vertex and W-algebras. Springer INdAM Series, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-030-32906-8_3

Download citation

Publish with us

Policies and ethics