Skip to main content

Reproducibility of Functional Connectivity Estimates in Motion Corrected Fetal fMRI

  • Conference paper
  • First Online:
Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2019, SUSI 2019)

Abstract

Preprocessing and motion correction are essential steps in resting state functional Magnetic Resonance Imaging (rs-fMRI) of the fetal brain. They aim to address the difficult task of removing artefacts caused by fetal movement or maternal breathing, and aim to suppress erroneous signal correlations caused by motion. While preprocessing standards have been established in the adult brain, motion correction of fetal rs-fMRI and subsequent interpretation of processed data is still challenging. Here, we evaluate the effect of different preprocessing methods and motion correction on rs-fMRI sequences by assessing reproducibility of functional connectivity estimates. For slice-based motion correction of 4D fetal rs-fMRI, we extend a high-resolution reconstruction approach presented for structural fetal MRI. Correlation, standard deviation and structural similarity index are evaluated on the whole cortex, on specific regions and at different gestational ages. Results show improved reproducibility and signal interpretability after preprocessing with motion correction enabling the quantification of long-range correlation patterns of the developing default mode network in the fetal brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://surfer.nmr.mgh.harvard.edu/.

References

  1. Ebner, M., et al.: An automated localization, segmentation and reconstruction framework for fetal brain MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 313–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_36

    Chapter  Google Scholar 

  2. Gholipour, A., Estroff, J.A., Warfield, S.K.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739–1758 (2010)

    Article  Google Scholar 

  3. van den Heuvel, M.I., et al.: Hubs in the human fetal brain network. Dev. Cogn. Neurosci. 30, 108–115 (2018)

    Article  Google Scholar 

  4. Jakab, A., et al.: Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Front. Hum. Neurosci. 8, 852 (2014)

    Article  Google Scholar 

  5. Jakab, A., Tuura, R., Kellenberger, C., Scheer, I.: In utero diffusion tensor imaging of the fetal brain: a reproducibility study. NeuroImage Clin. 15, 601–612 (2017)

    Article  Google Scholar 

  6. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  7. Licandro, R., Nenning, K.H., Schwartz, E., Kollndorfer, K., Bartha-Doering, L., Langs, G.: Changing functional connectivity in the child’s developing brain affected by ischaemic stroke. In: Proceedings MICCAI PIPPI (2016)

    Google Scholar 

  8. Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003 (2014)

    Article  Google Scholar 

  9. Poldrack, R.A., Mumford, J.A., Nichols, T.E.: Handbook of Functional MRI Data Analysis. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  10. Power, J.D., Schlaggar, B.L., Petersen, S.E.: Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105, 536–551 (2015)

    Article  Google Scholar 

  11. Schwartz, E., Kasprian, G., Jakab, A., Prayer, D., Schöpf, V., Langs, G.: Modeling fetal cortical expansion using graph-regularized Gompertz models. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 247–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_29

    Chapter  Google Scholar 

  12. Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B.T., Buckner, R.L.: The organization of local and distant functional connectivity in the human brain. PLoS Comput. Biol. 6(6), e1000808 (2010)

    Article  MathSciNet  Google Scholar 

  13. Thomason, M.E., et al.: Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus. PLoS ONE 9(5), e94423 (2014)

    Article  Google Scholar 

  14. Thomason, M.E., et al.: Prenatal lead exposure impacts cross-hemispheric and long-range connectivity in the human fetal brain. NeuroImage 191, 186–192 (2019)

    Article  Google Scholar 

  15. Thomason, M.E., et al.: Weak functional connectivity in the human fetal brain prior to preterm birth. Sci. Rep. 7, 39286 (2017)

    Article  Google Scholar 

  16. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  17. Wheelock, M., et al.: Sex differences in functional connectivity during fetal brain development. Dev. Cognitive Neurosci. 36, 100632 (2019)

    Article  Google Scholar 

  18. Yeo, B.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)

    Article  Google Scholar 

  19. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by The Wellcome Trust [WT101957; 203148/Z/16/Z], the Engineering and Physical Sciences Research Council [NS/A000027/1; NS/A000049/1], Austrian Science Fund FWF (I2714-B31) and EU H2020 Marie Sklodowska-Curie No 765148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sobotka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sobotka, D. et al. (2019). Reproducibility of Functional Connectivity Estimates in Motion Corrected Fetal fMRI. In: Wang, Q., et al. Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis. PIPPI SUSI 2019 2019. Lecture Notes in Computer Science(), vol 11798. Springer, Cham. https://doi.org/10.1007/978-3-030-32875-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32875-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32874-0

  • Online ISBN: 978-3-030-32875-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics