Skip to main content

A Conceptual Framework to Incorporate Complex Basic Events in HiP-HOPS

  • Conference paper
  • First Online:
Book cover Model-Based Safety and Assessment (IMBSA 2019)

Abstract

Reliability evaluation for ensuring the uninterrupted system operation is an integral part of dependable system development. Model-based safety analysis (MBSA) techniques such as Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) have made the reliability analysis process less expensive in terms of effort and time required. HiP-HOPS uses an analytical modelling approach for Fault tree analysis to automate the reliability analysis process, where each system component is associated with its failure rate or failure probability. However, such non-state-space analysis models are not capable of modelling more complex failure behaviour of component like failure/repair dependencies, e.g., spares, shared repair, imperfect coverage, etc. State-space based paradigms like Markov chain can model complex failure behaviour, but their use can lead to state-space explosion, thus undermining the overall analysis capacity. Therefore, to maintain the benefits of MBSA while not compromising on modelling capability, in this paper, we propose a conceptual framework to incorporate complex basic events in HiP-HOPS. The idea is demonstrated via an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R., Forster, M., Trapp, M.: Determining configuration probabilities of safety-critical adaptive systems. In: 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW 2007), vol. 2, pp. 548–555. IEEE (2007)

    Google Scholar 

  2. Aslansefat, K.: A novel approach for reliability and safety evaluation of control systems with dynamic fault tree. M.Sc. thesis, Abbaspur Campus, Shahid Beheshti University (2014)

    Google Scholar 

  3. Aslansefat, K., Latif-Shabgahi, G.: A hierarchical approach for dynamic fault trees solution through semi-Markov process. IEEE Trans. Reliab. 1–18 (2019). https://doi.org/10.1109/TR.2019.2923893

  4. Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees and Markov models: Boolean logic driven Markov processes. Reliab. Eng. Syst. Saf. 82(2), 149–163 (2003)

    Article  Google Scholar 

  5. Chen, D., Mahmud, N., Walker, M., Feng, L., Lönn, H., Papadopoulos, Y.: Systems modeling with EAST-ADL for fault tree analysis through HiP-HOPS. IFAC Proc. Vol. 46(22), 91–96 (2013)

    Article  Google Scholar 

  6. Cochran, J.: Wiley Encyclopedia of Operations Research and Management Science. Wiley, Hoboken (2010)

    Book  Google Scholar 

  7. Distefano, S., Longo, F., Trivedi, K.S.: Investigating dynamic reliability and availability through state-space models. Comput. Math. Appl. 64(12), 3701–3716 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dugan, J.B., Bavuso, S., Boyd, M.: Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

    Article  Google Scholar 

  9. Fricks, R., Telek, M., Puliafito, A., Trivedi, K.S.: Markov renewal theory applied to performability evaluation. Technical report, North Carolina State University, Center for Advanced Computing and Communication (1996)

    Google Scholar 

  10. Insua, D., Ruggeri, F., Wiper, M.: Bayesian Analysis of Stochastic Process Models, vol. 978. Wiley, Chichester (2012)

    Book  Google Scholar 

  11. Kabir, S.: An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 77, 114–135 (2017)

    Article  Google Scholar 

  12. Kabir, S., Azad, T., Walker, M., Gheraibia, Y.: Reliability analysis of automated pond oxygen management system. In: 18th International Conference on Computer and Information Technology (ICCIT), pp. 144–149. IEEE (2015)

    Google Scholar 

  13. Kabir, S., Walker, M., Papadopoulos, Y.: Dynamic system safety analysis in HiP-HOPS with Petri nets and Bayesian networks. Saf. Sci. 105, 55–70 (2018)

    Article  Google Scholar 

  14. Kabir, S., Walker, M., Papadopoulos, Y., Rüde, E., Securius, P.: Fuzzy temporal fault tree analysis of dynamic systems. Int. J. Approx. Reason. 77, 20–37 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kabir, S., Yazdi, M., Aizpurua, J.I., Papadopoulos, Y.: Uncertainty-aware dynamic reliability analysis framework for complex systems. IEEE Access 6(1), 29499–29515 (2018)

    Article  Google Scholar 

  16. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees-a safety analysis model for software-controlled systems. Reliab. Eng. Syst. Saf. 92(11), 1521–1537 (2007)

    Article  Google Scholar 

  17. Kim, D.S., Ghosh, R., Trivedi, K.S.: A hierarchical model for reliability analysis of sensor networks. In: 2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing, pp. 247–248, December 2010

    Google Scholar 

  18. Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault tree analysis, methods, and applications a review. IEEE Trans. Reliab. 34(3), 194–203 (1985)

    Article  Google Scholar 

  19. Mian, Z., Bottaci, L., Papadopoulos, Y., Biehl, M.: System dependability modelling and analysis using AADL and HiP-HOPS. IFAC Proc. Vol. 45(6), 1647–1652 (2012)

    Article  Google Scholar 

  20. Nguyen, T.A., Min, D., Choi, E., Tran, T.D.: Reliability and availability evaluation for cloud data center networks using hierarchical models. IEEE Access 7, 9273–9313 (2019)

    Article  Google Scholar 

  21. Papadopoulos, Y., Maruhn, M.: Model-based synthesis of fault trees from Matlab-Simulink models. In: 2001 International Conference on Dependable Systems and Networks, pp. 77–82. IEEE (2001)

    Google Scholar 

  22. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and propagation studies. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 139–152. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48249-0_13

    Chapter  Google Scholar 

  23. Papadopoulos, Y., et al.: Engineering failure analysis and design optimisation with HiP-HOPS. Eng. Fail. Anal. 18(2), 590–608 (2011)

    Article  Google Scholar 

  24. Papadopoulos, Y., et al.: A synthesis of logic and bio-inspired techniques in the design of dependable systems. Ann. Rev. Control 41, 170–182 (2016)

    Article  Google Scholar 

  25. Ramezani, Z., Latif-Shabgahi, G.R., Khajeie, P., Aslansefat, K.: Hierarchical steady-state availability evaluation of dynamic fault trees through equal Markov model. In: 2016 24th Iranian Conference on Electrical Engineering (ICEE), pp. 1848–1854. IEEE (2016)

    Google Scholar 

  26. Sharvia, S., Kabir, S., Walker, M., Papadopoulos, Y.: Model-based dependability analysis: state-of-the-art, challenges, and future outlook. In: Software Quality Assurance, pp. 251–278. Elsevier (2016)

    Google Scholar 

  27. da Silva Azevedo, L., Parker, D., Walker, M., Papadopoulos, Y., Araujo, R.E.: Assisted assignment of automotive safety requirements. IEEE Softw. 31(1), 62–68 (2014)

    Article  Google Scholar 

  28. Sorokos, I., Papadopoulos, Y., Azevedo, L., Parker, D., Walker, M.: Automating allocation of development assurance levels: an extension to HiP-HOPS. IFAC-PapersOnLine 48(7), 9–14 (2015)

    Article  Google Scholar 

  29. Tanaka, H., Fan, L., Lai, F., Toguchi, K.: Fault-tree analysis by fuzzy probability. IEEE Trans. Reliab. 32(5), 453–457 (1983)

    Article  Google Scholar 

  30. Trivedi, K.S., Bobbio, A.: Reliability and Availability Engineering: Modeling, Analysis, and Applications. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  31. Trivedi, K.S., Kim, D.S., Ghosh, R.: System availability assessment using stochastic models. Appl. Stochast. Models Bus. Ind. 29(2), 94–109 (2013)

    Article  MathSciNet  Google Scholar 

  32. Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault tree handbook with aerospace applications. Technical report, NASA Office of Safety and Mission Assurance, Washington, DC (2002)

    Google Scholar 

  33. Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: towards a full implementation of the fault tree handbook. Control Eng. Pract. 17(10), 1115–1125 (2009)

    Article  Google Scholar 

  34. Zajac, M., Kierzkowski, A.: Attempts at calculating chosen contributors with regard to the semi-Markov process and the Weibull function distribution. J. Pol. Saf. Reliab. Assoc. 2, 217–222 (2011)

    Google Scholar 

  35. Zeller, M., Montrone, F.: Combination of component fault trees and Markov chains to analyze complex, software-controlled systems. In: 2018 3rd International Conference on System Reliability and Safety (ICSRS), pp. 13–20. IEEE (2019)

    Google Scholar 

  36. Zixian, L., Xin, N., Yiliu, L., Qinglu, S., Yukun, W.: Gastric esophageal surgery risk analysis with a fault tree and Markov integrated model. Reliab. Eng. Syst. Saf. 96(12), 1591–1600 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DEIS H2020 Project under Grant 732242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koorosh Aslansefat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., Gheraibia, Y. (2019). A Conceptual Framework to Incorporate Complex Basic Events in HiP-HOPS. In: Papadopoulos, Y., Aslansefat, K., Katsaros, P., Bozzano, M. (eds) Model-Based Safety and Assessment. IMBSA 2019. Lecture Notes in Computer Science(), vol 11842. Springer, Cham. https://doi.org/10.1007/978-3-030-32872-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32872-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32871-9

  • Online ISBN: 978-3-030-32872-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics