Advertisement

What Today’s Serious Cyber Attacks on Cars Tell Us: Consequences for Automotive Security and Dependability

  • Markus ZoppeltEmail author
  • Ramin Tavakoli Kolagari
Conference paper
  • 223 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11842)

Abstract

Highly connected with the environment via various interfaces, cars have been the focus of malicious cyber attacks for years. These attacks are becoming an increasing burden for a society with growing vehicle autonomization: they are the sword of Damocles of future mobility. Therefore, research is particularly active in the area of vehicle IT security, and in part also in the area of dependability, in order to develop effective countermeasures and to maintain a minimum of one step ahead of hackers. This paper examines the known state-of-the-art security and dependability measures based on a detailed and systematic analysis of published cyber attacks on automotive software systems. The sobering result of the analysis of the cyber attacks with the model-based technique SAM (Security Abstraction Model) and a categorization of the examined attacks in relation to the known security and dependability measures is that most countermeasures against cyber attacks are hardly effective. They either are not applicable to the underlying problem or take effect too late; the intruder has already gained access to a substantial part of the vehicle when the countermeasures apply. The paper is thus contributing to an understanding of the gaps that exist today in the area of vehicle security and dependability and concludes concrete research challenges.

Keywords

Automotive security Automotive system architecture Dependability Model-driven engineering methodologies 

Notes

Acknowledgment

This work is funded by the Bavarian State Ministry of Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B).

M.Z. was supported by the BayWISS Consortium Digitization.

References

  1. 1.
    Common Vulnerability Scoring System Version 3.0 Calculator. https://www.first.org/cvss/calculator/3.0. Accessed 14 May 2019
  2. 2.
    Vulnerability Notes Database. http://www.kb.cert.org/vuls/. Accessed 29 Oct 2014
  3. 3.
    Nürnberger, S., Rossow, C.: vatiCAN: vetted, authenticated CAN bus. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 106–124. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53140-2_6CrossRefGoogle Scholar
  4. 4.
    Agrawal, M., Huang, T., Zhou, J., Chang, D.: CAN-FD-Sec: improving security of CAN-FD protocol. In: Hamid, B., Gallina, B., Shabtai, A., Elovici, Y., Garcia-Alfaro, J. (eds.) CSITS 2018, ISSA 2018. LNCS, vol. 11552, pp. 77–93. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-16874-2_6CrossRefGoogle Scholar
  5. 5.
    Amendola, S.: Improving automotive security by evaluation-from security health check to common criteria. White paper, Security Research & Consulting GmbH 176 (2004)Google Scholar
  6. 6.
    Auernhammer, K., Tavakoli Kolagari, R., Zoppelt, M.: Attacks on machine learning: lurking danger for accountability. In: Proceedings of the AAAI Workshop on Artificial Intelligence Safety 2019 co-located with the Thirty-Third AAAI Conference on Artificial Intelligence 2019 (AAAI 2019), Honolulu, Hawaii, p. 9 (2019)Google Scholar
  7. 7.
    Barzilai, D.: Autonomous Security, pp. 1–14 (2018)Google Scholar
  8. 8.
    Foster, I., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: a story of telematic failures. In: 9th USENIX Workshop on Offensive Technologies (WOOT 15) (2015)Google Scholar
  9. 9.
    Garcia, F.D., Oswald, D., Kasper, T., Pavlidès, P.: Lock it and still lose it–on the (in)security of automotive remote keyless entry systems. In: Proceedings of the 25th USENIX Security Symposium, pp. 929–944 (2016)Google Scholar
  10. 10.
    Glas, B., et al.: Automotive safety and security integration challenges. In: Automotive-Safety & Security 2014 (2015)Google Scholar
  11. 11.
    Hayes, J., Danezis, G.: Machine Learning as an Adversarial Service: Learning Black-Box Adversarial Examples 2 (2017)Google Scholar
  12. 12.
    Van den Herrewegen, J., Garcia, F.D.: Beneath the bonnet: a breakdown of diagnostic security. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 305–324. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99073-6_15CrossRefGoogle Scholar
  13. 13.
    Hubaux, J.P., Capkun, S., Luo, J.: The security and privacy of smart vehicles. IEEE Secur. Privacy 3, 49–55 (2004)CrossRefGoogle Scholar
  14. 14.
    Huber, M., Brunner, M., Sauerwein, C., Carlan, C., Breu, R.: Roadblocks on the highway to secure cars: an exploratory survey on the current safety and security practice of the automotive industry. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 157–171. Springer International Publishing, Cham (2018).  https://doi.org/10.1007/978-3-319-99130-6_11CrossRefGoogle Scholar
  15. 15.
    Humayed, A., Luo, B.: Using ID-hopping to defend against targeted DoS on CAN. In: Proceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles - SCAV 2017, pp. 19–26 (2017)Google Scholar
  16. 16.
    Jakubowski, M.H., Saw, C.W.N., Venkatesan, R.: Tamper-tolerant software: modeling and implementation. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 125–139. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04846-3_9CrossRefzbMATHGoogle Scholar
  17. 17.
    Kriha, W., Schmitz, R.: Sichere Systeme: Konzepte, Architekturen und Frameworks. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-78959-8CrossRefGoogle Scholar
  18. 18.
    Lukasiewycz, M., Mundhenk, P., Steinhorst, S.: Security-aware obfuscated priority assignment for automotive CAN platforms. ACM Trans. Des. Autom. Electron. Syst. 21(2), 1–27 (2016)CrossRefGoogle Scholar
  19. 19.
    Madl, T., Brückmann, J., Hof, H.J.: CAN Obfuscation by Randomization (CANORa) A technology to prevent large-scale malware attacks on driverless autonomous vehicles (September), 1–7 (2018)Google Scholar
  20. 20.
    Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE Secur. Privacy 4(6), 85–89 (2006)CrossRefGoogle Scholar
  21. 21.
    Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. In: Defcon 23 2015, pp. 1–91 (2015). http://illmatics.com/Remote%20Car%20Hacking.pdf
  22. 22.
    Miller, C., Valasek, C.: CAN message injection, pp. 1–29 (2016). http://illmatics.com/canmessageinjection.pdf
  23. 23.
    Mundhenk, P., et al.: Security in automotive networks: lightweight authentication and authorization (2017)CrossRefGoogle Scholar
  24. 24.
    Nie, S., Liu, L., Du, Y.: Free-fall: hacking tesla from wireless to CAN bus. In: Defcon, pp. 1–16 (2017)Google Scholar
  25. 25.
    Nie, S., Liu, L., Du, Y., Zhang, W.: Over-the-air: how we remotely compromised the gateway, BCM, and autopilot ECUs of tesla cars. In: Defcon 1 (2018)Google Scholar
  26. 26.
    Nowdehi, N., Lautenbach, A., Olovsson, T.: In-vehicle CAN message authentication: an evaluation based on industrial criteria. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–7. IEEE (2017)Google Scholar
  27. 27.
    Othmane, L.B., Weffers, H., Mohamad, M.M., Wolf, M.: A survey of security and privacy in connected vehicles. In: Benhaddou, D., Al-Fuqaha, A. (eds.) Wireless Sensor and Mobile Ad-Hoc Networks, pp. 217–247. Springer, New York (2015).  https://doi.org/10.1007/978-1-4939-2468-4_10CrossRefGoogle Scholar
  28. 28.
    Palanca, A., Evenchick, E., Maggi, F., Zanero, S.: A stealth, selective, link-layer denial-of-service attack against automotive networks. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS, vol. 10327, pp. 185–206. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60876-1_9CrossRefGoogle Scholar
  29. 29.
    Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in Machine Learning: From Phenomena to Black-Box Attacks Using Adversarial Samples (2016)Google Scholar
  30. 30.
    Radu, A.-I., Garcia, F.D.: LeiA: a lightweight authentication protocol for CAN. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 283–300. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45741-3_15CrossRefGoogle Scholar
  31. 31.
    Ray, S., Chen, W., Bhadra, J., Al Faruque, M.A.: Extensibility in automotive security: current practice and challenges. In: 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2017Google Scholar
  32. 32.
    Rosenstatter, T., Olovsson, T.: Towards a standardized mapping from automotive security levels to security mechanisms. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC 2018-November, pp. 1501–1507 (2018)Google Scholar
  33. 33.
    Sabaliauskaite, G., Liew, L.S., Cui, J.: Integrating autonomous vehicle safety and security analysis using STPA method and the six-step model. Int. J. Adv. Secur. 11(1&2), 160–169 (2018)Google Scholar
  34. 34.
    Tencent Keen Security Lab: Experimental Security Assessment of BMW Cars: A Summary Report (2018)Google Scholar
  35. 35.
    Tencent Keen Security Lab: Experimental Security Research of Tesla Autopilot, p. 38 (2019)Google Scholar
  36. 36.
    Valasek, C., Miller, C.: Adventures in automotive networks and control units. Technical White Paper 21, 99 (2013)Google Scholar
  37. 37.
    Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In: Workshop on Embedded Security in Cars (2004)Google Scholar
  38. 38.
    Wolf, M., Weimerskirch, A., Wollinger, T.: State of the art: embedding security in vehicles. EURASIP J. Embedded Syst. 2007(1), 74706 (2007)CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Ge, B., Li, X., Shi, B., Li, B.: Controlling a car through OBD injection. In: Proceedings - 3rd IEEE International Conference on Cyber Security and Cloud Computing, CSCloud 2016 and 2nd IEEE International Conference of Scalable and Smart Cloud, SSC 2016, pp. 26–29 (2016)Google Scholar
  40. 40.
    Zoppelt, M., Tavakoli Kolagari, R.: SAM: a security abstraction model for automotive software systems. In: Hamid, B., Gallina, B., Shabtai, A., Elovici, Y., Garcia-Alfaro, J. (eds.) CSITS/ISSA -2018. LNCS, vol. 11552, pp. 59–74. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-16874-2_5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nuremberg Institute of TechnologyNurembergGermany

Personalised recommendations