Skip to main content

Tractor and Implement

  • Chapter
  • First Online:
Fundamentals of Tractor Design

Abstract

The standard tractor becomes productive in agriculture only in combination with implements or trailers. A very few special tractors offer platforms for transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References – Translation of titles in ( )

  1. Stoss, K.J.: Tractor Power for Implement Operation − Mechanical, Hydraulic, and Electrical: An Overview. ASAE Lecture Series No. 37. St. Joseph, MI: ASAE 2013.

    Google Scholar 

  2. Fröba, N., M. Neukam, and A. Schauer: Anhängevorrichtungen an Traktoren. (Tractor coupling devices for pulling). DLG Merkblatt 387. Frankfurt/M.: Deutsche Landwirtschaftsgesellschaft 2013.

    Google Scholar 

  3. Mayhew, R.D.: Agricultural Tractor/Implement Drivelines. ASAE Lecture Series No. 19. St. Joseph, MI: ASAE 1994.

    Google Scholar 

  4. Seherr-Thoss, H.-Ch. v., F. Schmelz, and E. Aucktor: Universal Joints and Driveshafts. 2nd edition. Berlin, Heidelberg, New York: Springer-Verlag 2006. Also German and Chinese editions.

    Google Scholar 

  5. Niskanen, H.: The Proud History of AGCO. Duluth, USA, AGCO Corporation. Helsinki: Gummerus Printing, 2008.

    Google Scholar 

  6. Ferguson, H.: Improvements in and relating to Agricultural Implements. British patent No. 226,033, filed Dec. 11, 1923, accepted Dec. 18, 1924.

    Google Scholar 

  7. Ferguson, H.: Apparatus for Coupling Agricultural Implements to Tractors and Automatically Regulating the Depth of Work. British patent No. 253,366, filed Feb. 12, 1925, accepted June 14, 1926. Official reprint 1936 which embodies some corrections.

    Google Scholar 

  8. Seifert, A.: Hydraulische Kraftheber für den Ackerschlepper. (Hydraulic tractor hitches). Grundl. Landtechnik 1 (1951) No. 1, 45–60.

    Google Scholar 

  9. ISO 789-2: 2018. Agricultural tractors − Test procedures – Part 2: Rear three-point linkage lifting capacity.

    Google Scholar 

  10. ISO 730: 2009. Agricultural wheeled tractors – Rear-mounted three-point linkage – Categories 1N, 1, 2N, 2, 3N, 3, 4N. See also amendment 1, 2013.

    Google Scholar 

  11. Hain, K.: Das Übersetzungsverhältnis in periodischen Getrieben von Landmaschinen. (Input-output ratios of periodical linkages of agricultural machinery). Landt. Forschung 3 (1953) No. 4, 97–108.

    Google Scholar 

  12. Hawe, H., and S.S. Kofoed: Die Hubkraftkennlinien eines Dreipunktsystems. (Lifting forces of a three-point hitch). Grundl. Landtechnik 22 (1972) No.1, 16–20.

    Google Scholar 

  13. Morling, R.W.: Agricultural tractor hitches − analysis of design requirements. ASAE Lecture Series No. 5. St. Joseph, MI: ASAE 1979.

    Google Scholar 

  14. Pfab, H.: Grundlagen zur Auslegung des geregelten Krafthebers bei Traktoren. (Design fundamentals of the tractor threepoint hitch and its control). Ph.D. thesis TU Munich 1994. Fortschritt-Ber. VDI-Z. Series 14, No. 70. Düsseldorf: VDI-Verlag 1995.

    Google Scholar 

  15. Molari, G., M. Mattetti and A. Guarnieri: Optimal Three-Point Hitch Design to Maximize Lifting Performance. Transactions ASABE 57 (2014) No. 2, 371–379.

    Google Scholar 

  16. ISO 10448:1994. Agricultural tractors − Hydraulic pressure for implements.

    Google Scholar 

  17. Dwyer, M.J., D.A. Crolla, and G. Pearson: An Investigation of the Potential for Improvement of Tractor Draught Controls. J. agric. Engng. Res. 19 (1974) No. 2, 147–165.

    Article  Google Scholar 

  18. Kawamura, N.: Dynamic Analysis of Hydraulically Controlled Three Point Linkage Hitch. J. Jap. Soc. Agric. Machinery 18 (1956) No. 3, 1–15.

    Google Scholar 

  19. John Deere Lanz: Patent DE 11 29 751 B on three-point hitch control with automatic mix of draft and position signal. Filed June 11, 1959, published May 17, 1962 (see also patent DE 11 39 678 B).

    Google Scholar 

  20. Hesse, H.: Signalverarbeitung in Pflugregelsystemen. (Signal processing in plow control systems). Grundl. Landtechnik 32 (1982) No. 2, 54–59.

    Google Scholar 

  21. Henninghaus, F.: Regelung eines Krafthebers in einem Ackerschlepper mit servohydraulischen Elementen. (Tractor hitch control with servo-hydraulic elements). o+p 27 (1983) No. 2, 103–107.

    Google Scholar 

  22. Koenig, W.: Die Gestaltung einer neuen Reihe regelnder Kraftheber und ihrer Steuergeräte. (Design of a new family of threepoint hitches and their controls). Grundl. Landtechnik 18 (1968) No. 5, 165–171.

    Google Scholar 

  23. Harms, H.H.: Stand und Entwicklung der Schlepperhydraulik. (Review and prospects of tractor hydraulics). Grundl. Landtechnik 28 (1978) No. 3, 95–99.

    Google Scholar 

  24. Cowell, P.A. and P.F. Herbert: The Design of a Variable Geometry to Improve Depth Control of Tractor Mounted Implements. J. agric. Engng. Res. 39 (1988) No. 2, 85–97.

    Article  Google Scholar 

  25. Böhler, H.: Traktormodell zur Simulation der dynamischen Belastungen bei Transportfahrten. (Tractor model simulating dynamic loads for transport operations). Ph.D. thesis TU Munich 2001. Fortschritt-Ber. VDI-Z. Series 14, No. 104. Düsseldorf: VDI-Verlag 2001.

    Google Scholar 

  26. Hesse, H.: Aufbau und Wirkungsweise elektro-hydraulischer Regelsysteme. (Design and characteristics of electro-hydraulic closed loop controls). Grundl. Landtechnik 18 (1968) No. 1, 27–34.

    Google Scholar 

  27. Hesse, H., and R. Möller: Experimentelle und simulierte Untersuchung eines elektrohydraulischen Pflugregelungssystems. (Electro-hydraulic plow control: Experiments and simulation). Grundl. Landtechnik 18 (1968) No. 5, 177–184.

    Google Scholar 

  28. Boll, R., and K.J. Overshott (Vol.-Editors): Sensors, Volume 5: Magnetic sensors. Weinheim, New York: Wiley VCH 1989.

    Google Scholar 

  29. Hesse, H.: Hydraulik für Traktoren – Wissen ausführlich. (Tractor hydraulics – in detail). Edited by Bosch Rexroth AG, 1st Edition. Elchingen, Germany: 2014. ISBN 987-3-9814879-8-5.

    Google Scholar 

  30. Ayers, P.D., K.V. Verma, and M.N. Karim: Design and Analysis of Electrohydraulic Draft Control System. Transactions ASAE 32 (1989) No. 6, 1853–1855.

    Article  Google Scholar 

  31. Garbers, H.: Belastungsgrößen und Wirkungsggrade in Schlepperhydrauliksystemen. (Loads and efficiencies of tractor hydraulics). Ph.D. thesis TU Braunschweig 1985. Fortschritt-Ber. VDI-Z. Series 14, No. 30. Düsseldorf: VDI-Verlag 1986. German Summary in o+p 30 (1986) No. 11, 815–820.

    Google Scholar 

  32. ISO 11001-2:1993 (confirmed 2017). Agricultural wheeled tractors and implements – Three-point hitch couplers – Part 2: A-frame coupler.

    Google Scholar 

  33. ISO 1219-1:2012 (Amd. 2016). Fluid power systems and components – Part 1: Graphic symbols.

    Google Scholar 

  34. Fletcher, E. H.: Closed Center Hydraulic System with a Variable-Displacement Pump. ASAE paper 61–644. St. Joseph, MI: ASAE 1961. See also Agric. Engng. 6 (1963) No. 1, 18–21.

    Google Scholar 

  35. Khatti, R., and J. Plate: Allis-Chalmers Load-Sensitive Hydraulic System for Tractor-Implement Control. Transactions ASAE 17 (1974) No. 5, 851–855. See also SAE paper 730860 (1973) and ASAE paper 73-1504 (1973).

    Google Scholar 

  36. Garbers, H., and H.-H. Harms: Überlegungen zu künftigen Hydrauliksystemen in Ackerschleppern. (Thoughts on future tractor hydraulics). Grundl. Landtechnik 30 (1980) No. 6, 199–205.

    Google Scholar 

  37. Huova, M., et al.: Digital hydraulic multipressure actuator – the concept, simulation study and first experimental results. International Journal of Fluid Power 18 (2017) No. 3, 141–152 (with 22 refs).

    Google Scholar 

  38. Matthies, H.J., and K.Th. Renius: Einführung in die Ölhydraulik. (Introduction to Oil Hydraulics), 8th Edition. Wiesbaden: Springer-Vieweg 2014.

    Google Scholar 

  39. Rotthäuser; S., and P. Achten: Ein neuer alter Bekannter – der Hydrotransformator. (Old principle renewed – the hydro transformer). o+p 42 (1998) No. 6, 374–377.

    Google Scholar 

  40. Garbers, H., and Wilkens: Die Anwendung der Hydrostatik in Landmaschinen und Ackerschleppern. (Applications of hydrostatics in agicultural machines and tractors). o+p 28 (1984) No. 9, 541–547.

    Google Scholar 

  41. Harms, H.-H., and T. Lang: Fluidtechnik (Fluid power). Lecture held at Institute of Agricultural Machinery and Fluid Power of TU Braunschweig, WS 2002/03.

    Google Scholar 

  42. Ketterling, E., J. Lemke, and J. Horsch: New Series of Large Row Crop Tractors From Case IH. SAE paper No. 871641. Warrendale, Pa, USA: SAE 1987.

    Google Scholar 

  43. van Hamme, T.: Schlepperhydraulik. (Tractor hydraulics). In: Matthies, H.J. and F. Meier (Editors): Jahrbuch Agrartechnik Vol. 2 (1989), 34–37 and 153–154. Frankfurt/M.: Maschinenbauverlag 1989.

    Google Scholar 

  44. Harms, H.-H.: Energieeinsparung durch Systemwahl in der Mobilhydraulik. (Saving energy in mobile hydraulics through adequate system choice). VDI-Z. 122 (1980) No. 11, 1006–1010.

    Google Scholar 

  45. Friedrichsen, W., and T. van Hamme: Load-sensing in der Mobilhydraulik. (Load-sensing in mobile hydraulics). o+p 30 (1986) No. 12, 916–919.

    Google Scholar 

  46. Fedde, T.: Elektrohydraulische Bedarfsstromsysteme am Beispiel eines Traktors. (Electro-hydraulic flow on demand for a tractor). Ph.D. thesis TU Braunschweig 2007. Forsch.-Bericht Inst. f. Landmasch. und Fluidtechnik TU Braunschweig. Aachen: Shaker-Verlag 2008.

    Google Scholar 

  47. Jessen, S.: Tractor hydraulics (bilingual German-English). In: Matthies, H.J. and F. Meier (Editors): Jahrbuch Agrartechnik Vol. 15 (2003), 61–68 and 274–275. Münster: Landwirtschaftsverlag 2003. ISBN 3-7843-3193-9.

    Google Scholar 

  48. Frerichs, L.: Efficient and high performing hydraulic systems in mobile machines. Review. 10th Intern. Fluid Power Conference Dresden March 8–10, 2016, Vol. III, 33–44 (39 Refs.).

    Google Scholar 

  49. Murrenhoff, H., and L. Eckstein: Fluidtechnik für mobile Anwendungen. (Fluid power for mobile systems). 6th Edition. Aachen: Shaker-Verlag 2014.

    Google Scholar 

  50. Murrenhoff, H.: Grundlagen der Fluidtechnik. (Fundamentals of fluid power and control), Part I: Hydraulics. 8th Edition. Aachen: Shaker-Verlag 2016.

    Google Scholar 

  51. ISO 17567: 2005. Agricultural and forestry tractors and implements – Hydraulic power beyond.

    Google Scholar 

  52. Hoffmann, D.: Betriebsverhalten und Einsatzmöglichkeiten verschiedener Zahnradpumpenbauarten. (In-service behaviour and application potential of diverse gear pump types). Grundl. Landtechnik 24 (1974) No. 2, 51–55.

    Google Scholar 

  53. ISO 10763:1994. Hydraulic fluid power – Plain-end seamless and welded precision steel tubes – Dimensions and nominal working pressures.

    Google Scholar 

  54. Wetteborn, H.: Hydraulische Leitungstechnik. (Hydraulic piping). Bremen: HANSAFLEX Hydraulik GmbH, 2008.

    Google Scholar 

  55. ISO 6802:2018. Rubber or plastics hoses and hose assemblies – Hydraulic impulse test with flexing.

    Google Scholar 

  56. Herzan, G.: Quick action couplings: The tractor to implement hydraulic interface. ASAE Lecture Series No. 8. St. Joseph, MI: ASAE 1982.

    Google Scholar 

  57. ISO 5675:2008. Agricultural tractors and machinery – General purpose quick-action hydraulic couplers.

    Google Scholar 

  58. ISO 16028:2015. Hydraulic fluid power – Flush-face type, quick-action couplings for use at pressures of 20 MPa (200 bar) to 31.5 MPa (315 bar) – Specifications.

    Google Scholar 

  59. ISO 19879: 2010. Metallic tube connections for fluid power and general use – Test methods for hydraulic fluid power connections.

    Google Scholar 

  60. ISO/DIS 8434-1:2016. Metallic tube connections for fluid power and general use – Part 1: 24° cone connectors.

    Google Scholar 

  61. Stecki, J.S. (Editor): Total Contamination Control. Fluid Power Net Publications, Melbourne, Australia: 2000.

    Google Scholar 

  62. Fitch, E.C., and G.E. Maroney: A fundamental method for establishing contaminant tolerance profiles for pumps. Second Fluid Power Symposium Jan. 4–7, 1971, Guilford, Paper C1.

    Google Scholar 

  63. Böinghoff, O.: Ursachen und Folgen der Verschmutzung von Hydraulikflüssigkeiten. (Causes and consequences of oil contamination in hydraulics). Grundl. Landtechnik 24 (1974) No. 2, 46–50.

    Google Scholar 

  64. ISO 11943:2018. Hydraulic fluid power – Online automatic particle-counting systems for liquids – Methods of calibration and validation.

    Google Scholar 

  65. ISO 16889:2008. Hydraulic fluid power – Filters – Multi-pass method for evaluating filtration performance of a filter element.

    Google Scholar 

  66. ISO 4406:2017. Hydraulic fluid power – Fluids – Method for coding the level of contamination by solid particles.

    Google Scholar 

  67. See M. Rempfer [2.39] in chapter 2.

    Google Scholar 

  68. Pichlmaier, B.: Traktionsmanagement für Traktoren. (Traction management for tractors). Ph.D. thesis TU Munich 2012. Fortschritt-Ber. VDI-Z. Series 14, No. 30. Düsseldorf: VDI-Verlag 2013.

    Google Scholar 

  69. König, W.: Statische Beanspruchung des Ackerschleppers durch Frontlader. (Static loads on the farm tractor chassis through front loaders). Grundl. Landtechnik 12 (1962) No. 14, 51–57

    Google Scholar 

Other suggested publications

  • Reviews on hydraulics of the annual German Yearbook Agricultural Engineering.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Theodor Renius .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renius, K.T. (2020). Tractor and Implement. In: Fundamentals of Tractor Design. Springer, Cham. https://doi.org/10.1007/978-3-030-32804-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32804-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32803-0

  • Online ISBN: 978-3-030-32804-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics