Skip to main content

Nanocoating and Nanobattery

  • Chapter
  • First Online:
Molecular Modelling and Synthesis of Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 290))

  • 469 Accesses

Abstract

“Everything we see around us is made of atoms, the tiny elemental building blocks of matter. From stone, to copper, to bronze, iron, steel, and now silicon, the major technological ages of humankind have been defined by what these atoms can do in huge aggregates, trillions upon trillions of atoms at a time, molded, shaped, and refined as macroscopic objects. Even in our vaunted microelectronics of 1999, in our highest-tech silicon computer chip the smallest feature is a mountain compared to the size of a single atom. The resultant technology of our 20th century is fantastic, but it pales when compared to what will be possible when we learn to build things at the ultimate level of control, one atom at a time.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the conventional definition of poles in an electrolytic process, as mentioned in Sect. 9.3.2, the electrodes in Fig. 9.13 should be reversed into positive anode and negative cathode.

  2. 2.

    The net charge is q = +1e for Li, Na, and K; q = +2e for Mg; and q = +3e for Al.

References

  1. A. Mansoori, Principles of nanotechnology: molecular-based study of condensed matter in small systems (World Scientific Publishing, Singapore, 2005)

    Book  Google Scholar 

  2. http://www.freepatentsonline.com/20050208218.pdf. Accessed 24 Aug 2019

  3. https://patents.justia.com/patent/5861630. Accessed 24 Aug 2019

  4. I. Boustani, Snowflakes Effect: Chemisorption of Quasi-planar Boron Clusters on Metal Surface, vol. 2010, unpublished results

    Google Scholar 

  5. L. Chkhartishvili, R.C. Becker, R. Avci, Relative stability of boron quasi-planar clusters, in Proceedings of International Conference “Advanced Materials & Technologies”, eds. by G. Darsavelidze, A. Guldamashvili, R. Chedia, A. Sichinava, M. Kadaria, vol. 2015, Tbilisi, Universal, pp. 42–46

    Google Scholar 

  6. R.C. Becker, Boron Cluster Metamaterials, Cluster Sciences Research Institute, 39 Topsfield Rd., Ipswich, MA 01938, USA. Private communications

    Google Scholar 

  7. H. He, R. Pandey, I. Boustani, S.P. Karna, Metal-like electrical conductance in Boron fullerenes. J. Phys. Chem. C 114, 4149–4152 (2010)

    Article  CAS  Google Scholar 

  8. W. Xue, P.-F. Li, Dielectrophoretic Deposition and Alignment of Carbon Nanotubes, Carbon Nanotubes - Synthesis, Characterization, Applications, vol. 2011, ed. by Dr. Siva Yellampalli. ISBN: 978-953-307-497-9

    Google Scholar 

  9. D.P. Singh, A template for enhanced lithium ion battery electrodes. Thesis, Delft University of Technology, Delft, Netherlands, 2014. ISBN 978-94-6259-107-3

    Google Scholar 

  10. http://www.scientificamerican.com/article/how-do-batteries-store-an/. Accessed 3 March 2015

  11. http://www.upsbatterycenter.com/blog/battery-cathode/. Accessed 3 March 2015

  12. https://www.chemicool.com/definition/cathode-anode.html. Accessed 23 July 2019

  13. https://microbewiki.kenyon.edu/index.php/Virus_Selection_for_Lithium_Ion_Battery_Formation. Accessed 17 Feb 2017

  14. A.D. Roberts, X. Li, H.-F. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43, 4341–4356 (2014)

    Article  CAS  Google Scholar 

  15. J.-J. Wang, X.-L. Sun, Understanding and recent development of carbon coating on LiFePO\(_4\) cathode materials for lithium-ion batteries. Energy Environ. Sci. 5, 5163–5185 (2012)

    Article  CAS  Google Scholar 

  16. https://areweanycloser.wordpress.com/?s=battery. Accessed 10 March 2015

  17. http://www.scs.illinois.edu/murphy/Ran/research/energystorage.html. Accessed 17 Feb 2017

  18. http://www.electricalmarketplus.com/2015/09/what-is-conventional-current.html. Accessed 12 March 2015

  19. http://www.grandinetti.org/solution-chemistry. Accessed 12 March 2015

  20. http://www.rxffconsulting.com/. Accessed 23 Feb 2017

  21. http://www.targray.com/li-ion-battery/electrolyte Accessed 12 March 2015

  22. http://www.batteryuniversity.com/_img/content/li-ion-charge-discharge.jpg. Accessed 12 March 2015

  23. M.H. Kjell, Performance of conventional and structural lithium-ion batteries. Doctoral Thesis, Applied Electrochemistry, School of Chemical Science and Engineering, Stockholm, vol. 2013. ISBN 978-91-7501-774-7

    Google Scholar 

  24. http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2014/CS/c4cs00071d/c4cs00071d-f1_hi-res.gif. Accessed 4 March 2017

  25. B. Scrosati, Nanomaterials: paper powers battery breakthrough. Nat. Nanotechnol. 2, 598–599 (2007)

    Article  CAS  Google Scholar 

  26. W. Wan, H.-D. Wang, First-principles investigation of adsorption and diffusion of ions on pristine, defective and B-doped graphene. Materials 8, 6163–6178 (2015)

    Article  CAS  Google Scholar 

  27. J. Zhou, Q. Sun, Q. Wang, P. Jena, Tailoring Li adsorption on graphene. Phys. Rev. B 90, 205427(1-7) (2014)

    Google Scholar 

  28. M.-J. Liu, A. Kutana, Y.-Y. Liu, B. Yakobson, First-principles studies of Li nucleation on graphene. J. Phys. Chem. Lett. 5, 1225–1229 (2014)

    Article  CAS  Google Scholar 

  29. R.R. Chianelli, Microscopic studies of transition metal chalcogenides. J. Cryst. Growth. 34, 239–244 (1976)

    Article  CAS  Google Scholar 

  30. https://areweanycloser.wordpress.com/2013/06/21/dendritic-lithium-and-battery-fires/. Accessed 4 March 2017

  31. H.R. Jiang, Z.-H. Lu, M.C. Wu, F. Ciucci, T.S. Zhao, Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23, 97–104 (2016)

    Article  CAS  Google Scholar 

  32. D.-W. Rao, L.-Y. Zhang, Z.-S. Meng, X.-R. Zhang, Y.-H. Wang, G.-J. Qiao, X.-Q. Shen, H. Xia, J.-H. Liu, R.-F. Lu, Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. J. Mater. Chem. A 5, 2328–2338 (2017)

    Article  CAS  Google Scholar 

  33. P. Liang, J.-T. Cao, B. Tai, L. Zhang, H. Shu, F. Li, D.-L. Chao, Is borophene a suitable anode material for sodium ion battery? J. Alloys Compd. 704, 152–159 (2017)

    Google Scholar 

  34. X.-M. Zhnag, J.-P. Hu, Y.-C. Cheng, H.Y. Yang, Y. Yao, S.-Y.A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340 (2016)

    Article  Google Scholar 

  35. C. Zhan, P.-F. Zhang, S. Dai, Jiang, De-en.: Boron supercapacitors. ACE Energy Lett. 1, 1241–1246 (2016)

    Google Scholar 

  36. J.Z. Li, G.A. Tritsaris, X.Y. Zhang, B. Shi, C. Yang, S.Q. Liu, J. Yang, L.Q. Xu, J.B. Yang, F. Pan, E. Kaxiras, J. Lu, Monolayer honeycomb borophene: a promising anode material with a record capacity for Lithium-Ion and sodium-ion batteries. J. Electrochem. Soc. 16, 090527 (2020)

    Article  Google Scholar 

  37. W.B. Li, L.J. Kong, C.Y. Chen, J. Gou, S.X. Sheng, W.F. Zhang, H. Li, L. Chen, P. Cheng, K.H. Wu, Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Boustani .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boustani, I. (2020). Nanocoating and Nanobattery. In: Molecular Modelling and Synthesis of Nanomaterials. Springer Series in Materials Science, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-030-32726-2_9

Download citation

Publish with us

Policies and ethics