Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 290))

  • 444 Accesses

Abstract

Questions, like who mentioned and used the term clusters for the first time, and who found and interpreted the nuclear and electronic shells of clusters, are answered. The definition, history, discovery of electronic shells and synthesis of clusters are presented. The evolution of small clusters to nanoclusters and their function in nanotechnology are discussed. The terms magic numbers in nature and their relationship to clusters are explained. The nuclear, electronic, atomic, and magnetic shells are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chow, M.L. Cohen, Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52, 2141 (1984)

    Article  CAS  Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C\(_{60}\): buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  3. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  CAS  Google Scholar 

  4. I. Boustani, W. Pewestorf, P. Fantucci, V. Bonaić-Kouteckỳ, J. Kouteckỳ, Systematic ab initio configuration-interaction study of alkali-metal clusters: relation between electronic structure and geometry of small Li clusters. Phys. Rev. B 35, 9437 (1987)

    Google Scholar 

  5. A. Kornath, A. Kaufmann, A. Zoermer, R. Ludwig, Raman spectroscopic investigation of small matrix-isolated lithium clusters. J. Chem. Phys. 118, 6957 (2003)

    Article  CAS  Google Scholar 

  6. I. Boustani, Systematic LSD investigation on cationic boron clusters B\(_{n} (n=2-14)\). Int. J. Quantum Chem. 52, 1081 (1994)

    Article  CAS  Google Scholar 

  7. H.J. Zhai, B. Kiran, J. Li, L.-S. Wang, Hydrocarbon analogues of boron clusters - planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827 (2003)

    Article  CAS  Google Scholar 

  8. Z.A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Planar hexagonal B\(_{36}\) as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014)

    Article  Google Scholar 

  9. I. Boustani, A. Quandt, Nanotubes of bare boron clusters. Ab initio and density functional theory. Europhys. Lett. 39, 527 (1997)

    Google Scholar 

  10. I. Boustani, A. Quandt, E. Hernández, A. Rubio, New boron based nanostructured materials. J. Chem. Phys. 110, 3176 (1999)

    Article  CAS  Google Scholar 

  11. D. Ciuparu, R.F. Klie, Y. Zhu, L. Pfefferle, Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967 (2004)

    Article  CAS  Google Scholar 

  12. F. Liu, C.-M. Shen, Z.-J. Su, X.-L. Ding, S.-Z. Deng, J. Chen, N.-S. Xu, H.-J. Gao, Metal-like single crystalline boron nanotubes: synthesis and it in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197 (2010)

    Article  CAS  Google Scholar 

  13. I. Boustani, Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of B\(_n (n=2-14)\). Phys. Rev. B 55, 16426 (1997)

    Article  CAS  Google Scholar 

  14. X.-F. Zhou, X. Dong, A.R. Oganov, Q. Zhu, Y.-J. Tian, H.-T. Wang, Semi-metallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014)

    Article  Google Scholar 

  15. A.R. Oganov, J. Chen, C. Gatti, Y.-M. Ma, T. Yu, Z. Liu, C.W. Glass, Y.-Z. Ma, O.O. Kurakevych, V.L. Solozhenko, Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009)

    Google Scholar 

  16. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  17. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Google Scholar 

  18. R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)

    Article  CAS  Google Scholar 

  19. S. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Structure and electronic properties of MoS\(_2\) nanotubes. Phys. Rev. Lett. 85, 146 (2000)

    Article  CAS  Google Scholar 

  20. http://www.angelo.edu/faculty/kboudrea/periodic/physical_metals_fig1.gif. Accessed 26 Oct 2014

  21. G.C. Benson, R. Shuttleworth, The surface energy of small nuclei. J. Chem. Phys. 19, 130–131 (1951)

    Article  CAS  Google Scholar 

  22. F.A. Cotton, Metal atom clusters in oxide systems. Inorg. Chem. 3(9), 1217–1220 (1964)

    Article  CAS  Google Scholar 

  23. J.J. Burton, Anomalous heat capacity of spherical clusters of atoms. Chem. Phys. Lett. 3, 594–596 (1969)

    Article  CAS  Google Scholar 

  24. K. Wade, The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 792–793 (1971)

    Google Scholar 

  25. K. Wade, Structural and bonding patterns in cluster chemistry. Advances in Inorganic Chemistry and Radiochemistry, vol. 18 (1976), pp. 1–66

    Google Scholar 

  26. M.M. Balakrishnarajan, E.D. Jemmis, Electronic requirements of polycondensed polyhedral boranes. J. Am. Chem. Soc. 122, 4516–4517 (2000)

    Article  CAS  Google Scholar 

  27. E.D. Jemmis, Building relationships between polyhedral boranes and elemental boron. Chemtracts Inorg. Chem. 18, 620–628 (2005)

    CAS  Google Scholar 

  28. G. Audi, The history of nuclidic masses and of their evaluation, arXiv:physics/0602050v1. Accessed 1 Oct 2014

  29. Rikenresearch: http://www.riken.jp/en/research/rikenresearch/highlights/6041/. Accessed 1 Oct 2014

  30. J.J. Burton, Configuration, energy, and heat capacity of small spherical clusters of atoms. J. Chem. Phys. 52, 345–352 (1970)

    Article  CAS  Google Scholar 

  31. K.J. Klabunde, R.M. Richards, Nanoscale Materials in Chemistry, 2nd edn. (Wiley, Inc., Hoboken, 2009)

    Google Scholar 

  32. http://homepage.hispeed.ch/bakowies/graphics/fullerenes_allfullerenes.jpg. Accessed 1 Oct 2014

  33. https://en.wikipedia.org/wiki/File:Ionization_energies.png. Accessed 1 Jun 2019

  34. N.N. Greenwood, A. Earnshaw, Chemistry of Elements (Pergamon Press, Oxford, 1984)

    Google Scholar 

  35. P. Cottle, Nuclear physics: doubly magic tin. Nature 465, 430–431 (2010)

    Article  CAS  Google Scholar 

  36. http://profmattstrassler.files.wordpress.com/2013/02/nuclear_force.png. Accessed 1 Oct 2014

  37. https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcRD1GBCA6O9RIZaapQKVx5TJK_Wbo9xlvn-SSupjvCMalDmqwEz0A. Accessed 1 Oct 2014

  38. O. Echt, K. Sattler, E. Recknagel, Magic numbers for sphere packings: experimental verification in free xenon clusters. Phys. Rev. Mod. Lett. 47, 1121–1124 (1981)

    Article  CAS  Google Scholar 

  39. W.A. de Heer, The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993)

    Article  Google Scholar 

  40. T.P. Martin, Shells of atoms. Phys. Rep. 273, 199–241 (1996)

    Article  CAS  Google Scholar 

  41. I. Boustani, Ab initio quantum chemical calculations of Fe\(_{16}\) planar cluster (2017). Unpublished results

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Boustani .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boustani, I. (2020). Magic Numbers. In: Molecular Modelling and Synthesis of Nanomaterials. Springer Series in Materials Science, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-030-32726-2_2

Download citation

Publish with us

Policies and ethics