Skip to main content

High- and Low-Level Feature Enhancement for Medical Image Segmentation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11861))

Included in the following conference series:

Abstract

The fully convolutional networks (FCNs) have achieved state-of-the-art performance in numerous medical image segmentation tasks. Most FCNs typically focus on fusing features in different levels to improve the learning ability to multi-scale features. In this paper, we explore an alternative direction to improve network performance by enhancing the encoding quality of high- and low-level features, so as to introduce two feature enhancement modules: (i) high-level feature enhancement module (HFE); (ii) low-level feature enhancement module (LFE). HFE utilizes attention mechanism to selectively aggregate the optimal feature information in high- and low-levels, enhancing the ability of high-level features to reconstruct accurate details. LFE aims to use global semantic information of high-level features to adaptively guide feature learning of bottom networks, so as to enhance the semantic consistency of high- and low-level features. We integrate HFE and LFE into a typical encoder-decoder network, and propose a novel medical image segmentation framework (HLF-Net). On two challenging datasets of skin lesion segmentation and spleen segmentation, we prove that the proposed modules and network can improve the performance considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://challenge2017.isic-archive.com/.

  2. 2.

    http://medicaldecathlon.com/.

References

  1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. Wang, H., Gu, R., Li, Z.: Automated segmentation of intervertebral disc using fully dilated separable deep neural networks. In: Zheng, G., Belavy, D., Cai, Y., Li, S. (eds.) CSI 2018. LNCS, vol. 11397, pp. 66–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13736-6_6

    Chapter  Google Scholar 

  4. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  5. Zhang, Z., Zhang, X., Peng, C., Xue, X., Sun, J.: ExFuse: enhancing feature fusion for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 273–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_17

    Chapter  Google Scholar 

  6. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  7. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Wang, F., et al.: Residual attention network for image classification. In: CVPR, pp. 3156–3164 (2017)

    Google Scholar 

  10. Wu, Y., He, K.: Group normalization. arXiv preprint arXiv:1803.08494 (2018)

  11. Bi, L., Kim, J., Ahn, E., Feng, D.: Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv preprint arXiv:1703.04197 (2017)

  12. Berseth, M.: ISIC 2017-skin lesion analysis towards melanoma detection. arXiv preprint arXiv:1703.00523 (2017)

  13. Yuan, Y.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv:1803.08494 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Wang, G., Xu, Z., Lei, W., Zhang, S. (2019). High- and Low-Level Feature Enhancement for Medical Image Segmentation. In: Suk, HI., Liu, M., Yan, P., Lian, C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science(), vol 11861. Springer, Cham. https://doi.org/10.1007/978-3-030-32692-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32692-0_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32691-3

  • Online ISBN: 978-3-030-32692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics