Abadi, M., et al.: Deep learning with differential privacy. In: SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)
Google Scholar
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)
Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. In: SIGSAC Conference on Computer and Communications Security, pp. 603–618 (2017)
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lyu, M., Su, D., Li, N.: Understanding the sparse vector technique for differential privacy. Proc. VLDB Endow. 10(6), 637–648 (2017)
CrossRef
Google Scholar
McMahan, B., et al.: Communication efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017)
Google Scholar
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
CrossRef
Google Scholar
Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9
CrossRef
Google Scholar
Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)
Google Scholar
Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: ICCV (2017)
Google Scholar
Yu, H., Jin, R., Yang, S.: On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization. In: ICML (2019)
Google Scholar