Skip to main content

Polynomial-Delay Enumeration of Maximal Common Subsequences

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11811))

Included in the following conference series:

Abstract

A Maximal Common Subsequence (MCS) between two strings X and Y is an inclusion-maximal subsequence of both X and Y. MCSs are a natural generalization of the classical concept of Longest Common Subsequence (LCS), which can be seen as a longest MCS. We study the problem of efficiently listing all the distinct MCSs between two strings. As discussed in the paper, this problem is algorithmically challenging as the same MCS cannot be listed multiple times: for example, dynamic programming [Fraser et al., CPM 1998] incurs in an exponential waste of time, and a recent algorithm for finding an MCS [Sakai, CPM 2018] does not seem to immediately extend to listing. We follow an alternative and novel graph-based approach, proposing the first output-sensitive algorithm for this problem: it takes polynomial time in n per MCS found, where \(n = \max \{ |X|, |Y|\}\), with polynomial preprocessing time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A symmetric definition of left-unshiftable edges can be given by considering maximal leftmost mappings. The k-dominant edges for LCS [2, 4, 7] are a subset of left-unshiftable edges.

References

  1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other sequence similarity measures. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 59–78. October 2015

    Google Scholar 

  2. Apostolico, A.: Improving the worst-case performance of the Hunt-Szymanski strategy for the longest common subsequence of two strings. Inf. Process. Lett. 23(2), 63–69 (1986)

    Article  MathSciNet  Google Scholar 

  3. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000, pp. 39–48. September 2000

    Google Scholar 

  4. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming I: linear cost functions. J. ACM 39(3), 519–545 (1992)

    Article  MathSciNet  Google Scholar 

  5. Fraser, C.B., Irving, R.W., Middendorf, M.: Maximal common subsequences and minimal common supersequences. Inf. Comput. 124(2), 145–153 (1996)

    Article  MathSciNet  Google Scholar 

  6. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675 (1977)

    Article  MathSciNet  Google Scholar 

  7. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common subsequences. Commun. ACM 20(5), 350–353 (1977)

    Article  MathSciNet  Google Scholar 

  8. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Discrete Math. 28(4), 1916–1929 (2014)

    Article  MathSciNet  Google Scholar 

  9. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing 9(3), 558–565 (1980)

    Article  MathSciNet  Google Scholar 

  10. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)

    Article  MathSciNet  Google Scholar 

  11. Sakai, Y.: Maximal common subsequence algorithms. In: Navarro, G., Sankoff, D., Zhu, B. (eds.) Annual Symposium on Combinatorial Pattern Matching (CPM 2018), vol. 105, Leibniz International Proceedings in Informatics (LIPIcs), pp. 1:1–1:10. Dagstuhl, Germany, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  12. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Punzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conte, A., Grossi, R., Punzi, G., Uno, T. (2019). Polynomial-Delay Enumeration of Maximal Common Subsequences. In: Brisaboa, N., Puglisi, S. (eds) String Processing and Information Retrieval. SPIRE 2019. Lecture Notes in Computer Science(), vol 11811. Springer, Cham. https://doi.org/10.1007/978-3-030-32686-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32686-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32685-2

  • Online ISBN: 978-3-030-32686-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics