Skip to main content

The Tumor Microenvironments of Lethal Prostate Cancer

  • Chapter
  • First Online:
Book cover Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1210))

Abstract

Localized prostate cancer (confined to the gland) generally is considered curable, with nearly a 100% 5-year-survival rate. When the tumor escapes the prostate capsule, leading to metastasis, there is a poorer prognosis and higher mortality rate, with 5-year survival dropping to less than 30%. A major research question has been to understand the transition from indolent (low risk) disease to aggressive (high risk) disease. In this chapter, we provide details of the changing tumor microenvironments during prostate cancer invasion and their role in the progression and metastasis of lethal prostate cancer. Four microenvironments covered here include the muscle stroma, perineural invasion, hypoxia, and the role of microvesicles in altering the extracellular matrix environment. The adaptability of prostate cancer to these varied microenvironments and the cues for phenotypic changes are currently understudied areas. Model systems for understanding smooth muscle invasion both in vitro and in vivo are highlighted. Invasive human needle biopsy tissue and mouse xenograft tumors both contain smooth muscle invasion. In combination, the models can be used in an iterative process to validate molecular events for smooth muscle invasion in human tissue. Understanding the complex and interacting microenvironments in the prostate holds the key to early detection of high-risk disease and preventing tumor invasion through escape from the prostate capsule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Society AC, Cancer Facts & Figures 2018 (Program SaHSR, Atlanta, GA, 2018). Report No. 500818

    Google Scholar 

  2. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2017. Cancer J. Clinicians 67(1), 7–30 (2017). https://doi.org/10.3322/caac.21387. PubMed PMID: 28055103

    Article  Google Scholar 

  3. S.H. Au, B.D. Storey, J.C. Moore, Q. Tang, Y.L. Chen, S. Javaid, A.F. Sarioglu, R. Sullivan, M.W. Madden, R. O’Keefe, D.A. Haber, S. Maheswaran, D.M. Langenau, S.L. Stott, M. Toner, Clusters of circulating tumor cells traverse capillary-sized vessels. Proc. Natl. Acad. Sci. U. S. A. 113, 4947 (2016). https://doi.org/10.1073/pnas.1524448113. PubMed PMID: 27091969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. Gundem, P. Van Loo, B. Kremeyer, L.B. Alexandrov, J.M. Tubio, E. Papaemmanuil, D.S. Brewer, H.M. Kallio, G. Hognas, M. Annala, K. Kivinummi, V. Goody, C. Latimer, S. O’Meara, K.J. Dawson, W. Isaacs, M.R. Emmert-Buck, M. Nykter, C. Foster, Z. Kote-Jarai, D. Easton, H.C. Whitaker, D.E. Neal, C.S. Cooper, R.A. Eeles, T. Visakorpi, P.J. Campbell, U. McDermott, D.C. Wedge, G.S. Bova, The evolutionary history of lethal metastatic prostate cancer. Nature 520(7547), 353–357 (2015). https://doi.org/10.1038/nature14347. PubMed PMID: 25830880; PubMed Central PMCID: PMC4413032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A.B. Weiner, R.S. Matulewicz, S.E. Eggener, E.M. Schaeffer, Increasing incidence of metastatic prostate cancer in the United States (2004-2013). Prostate Cancer Prostatic Dis. 19(4), 395–397 (2016). https://doi.org/10.1038/pcan.2016.30. PubMed PMID: 27431496

    Article  CAS  PubMed  Google Scholar 

  6. A.W. Partin, M.W. Kattan, E.N. Subong, P.C. Walsh, K.J. Wojno, J.E. Oesterling, P.T. Scardino, J.D. Pearson, Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 277(18), 1445–1451 (1997). PubMed PMID: 9145716

    Article  CAS  PubMed  Google Scholar 

  7. R. Knuchel, Gleason score 6 - prostate cancer or benign variant? Oncol. Res. Treat. 38(12), 629–632 (2015). https://doi.org/10.1159/000441735. PubMed PMID: 26633167

    Article  CAS  PubMed  Google Scholar 

  8. W. Jackson, D.A. Hamstra, S. Johnson, J. Zhou, B. Foster, C. Foster, D. Li, Y. Song, G.S. Palapattu, L.P. Kunju, R. Mehra, F.Y. Feng, Gleason pattern 5 is the strongest pathologic predictor of recurrence, metastasis, and prostate cancer-specific death in patients receiving salvage radiation therapy following radical prostatectomy. Cancer 119(18), 3287–3294 (2013). https://doi.org/10.1002/cncr.28215. PubMed PMID: 23821578

    Article  PubMed  Google Scholar 

  9. D.E. Spratt, A.I. Cole, G.S. Palapattu, A.Z. Weizer, W.C. Jackson, J.S. Montgomery, R.T. Dess, S.G. Zhao, J.Y. Lee, A. Wu, L.P. Kunju, E. Talmich, D.C. Miller, B.K. Hollenbeck, S.A. Tomlins, F.Y. Feng, R. Mehra, T.M. Morgan, Independent surgical validation of the new prostate cancer grade-grouping system. BJU Int. 118(5), 763–769 (2016). https://doi.org/10.1111/bju.13488. PubMed PMID: 27009882

    Article  PubMed  Google Scholar 

  10. C. Quinello, L. Souza Ferreira, I. Picolli, M.L. Loesch, D.L. Portuondo, A. Batista-Duharte, I. Zeppone Carlos, Sporothrix schenckii cell wall proteins-stimulated BMDCs are able to induce a Th1-prone cytokine profile in vitro. J. Fungi 4(3), E106 (2018). https://doi.org/10.3390/jof4030106. PubMed PMID: 30200530; PubMed Central PMCID: PMC6162427

    Article  CAS  Google Scholar 

  11. A. Latosinska, M. Frantzi, A.S. Merseburger, H. Mischak, Promise and implementation of proteomic prostate cancer biomarkers. Diagnostics 8(3), E57 (2018). https://doi.org/10.3390/diagnostics8030057. PubMed PMID: 30158500; PubMed Central PMCID: PMC6174350

    Article  CAS  PubMed  Google Scholar 

  12. R.J. Hendriks, I.M. van Oort, J.A. Schalken, Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis. 20(1), 12–19 (2017). https://doi.org/10.1038/pcan.2016.59. PubMed PMID: 27922627

    Article  CAS  PubMed  Google Scholar 

  13. M.G. Sanda, Z. Feng, D.H. Howard, S.A. Tomlins, L.J. Sokoll, D.W. Chan, M.M. Regan, J. Groskopf, J. Chipman, D.H. Patil, S.S. Salami, D.S. Scherr, J. Kagan, S. Srivastava, I.M. Thompson Jr., J. Siddiqui, J. Fan, A.Y. Joon, L.E. Bantis, M.A. Rubin, A.M. Chinnayian, J.T. Wei, M. Bidair, A. Kibel, D.W. Lin, Y. Lotan, A. Partin, S. Taneja, Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol. 3(8), 1085–1093 (2017). https://doi.org/10.1001/jamaoncol.2017.0177. PubMed PMID: 28520829; PubMed Central PMCID: PMC5710334

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. Gordetsky, J. Epstein, Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn. Pathol. 11, 25 (2016). https://doi.org/10.1186/s13000-016-0478-2. PubMed PMID: 26956509; PubMed Central PMCID: PMC4784293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Kim, I. Tagkopoulos, Data integration and predictive modeling methods for multi-omics datasets. Mol. Omics 14(1), 8–25 (2018). https://doi.org/10.1039/c7mo00051k. PubMed PMID: 29725673

    Article  CAS  PubMed  Google Scholar 

  16. W.A. Sakr, D.J. Grignon, G.P. Haas, L.K. Heilbrun, J.E. Pontes, J.D. Crissman, Age and racial distribution of prostatic intraepithelial neoplasia. Eur. Urol. 30(2), 138–144 (1996). PubMed PMID: 8875194

    Article  CAS  PubMed  Google Scholar 

  17. H. Bonkhoff, K. Remberger, Morphogenetic aspects of normal and abnormal prostatic growth. Pathol. Res. Pract. 191(9), 833–835 (1995). PubMed PMID: 8606860

    Article  CAS  PubMed  Google Scholar 

  18. R.B. Nagle, A.E. Cress, Metastasis update: human prostate carcinoma invasion via tubulogenesis. Prostate Cancer. 2011, 249290 (2011). https://doi.org/10.1155/2011/249290. PubMed PMID: 21949592; PubMed Central PMCID: 3177701

    Article  PubMed  PubMed Central  Google Scholar 

  19. R. Montironi, R. Mazzucchelli, M. Scarpelli, Precancerous lesions and conditions of the prostate: from morphological and biological characterization to chemoprevention. Ann. N. Y. Acad. Sci. 963, 169–184 (2002). PubMed PMID: 12095942

    Article  PubMed  Google Scholar 

  20. Z. Zhang, Z. Yang, S. Jaamaa, H. Liu, L.G. Pellakuru, T. Iwata, T.M. af Hallstrom, A.M. De Marzo, M. Laiho, Differential epithelium DNA damage response to ATM and DNA-PK pathway inhibition in human prostate tissue culture. Cell Cycle 10(20), 3545–3553 (2011). https://doi.org/10.4161/cc.10.20.17841. PubMed PMID: 22030624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B.R. Adams, A.J. Hawkins, L.F. Povirk, K. Valerie, ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells. Aging 2(9), 582–596 (2010). PubMed PMID: 20844317; PubMed Central PMCID: 2984607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. Fung, D.M. Weinstock, Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One 6(5), e20514 (2011). https://doi.org/10.1371/journal.pone.0020514. PubMed PMID: 21633706; PubMed Central PMCID: 3102116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W.T. Lu, K. Lemonidis, R.M. Drayton, T. Nouspikel, The Fanconi anemia pathway is downregulated upon macrophage differentiation through two distinct mechanisms. Cell Cycle 10(19), 3300–3310 (2011). https://doi.org/10.4161/cc.10.19.17178. PubMed PMID: 21926477

    Article  CAS  PubMed  Google Scholar 

  24. K. Naka, A. Hirao, Maintenance of genomic integrity in hematopoietic stem cells. Int. J. Hematol. 93(4), 434–439 (2011). https://doi.org/10.1007/s12185-011-0793-z. PubMed PMID: 21384097

    Article  CAS  PubMed  Google Scholar 

  25. T. Rozario, D.W. DeSimone, The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341(1), 126–140 (2010). https://doi.org/10.1016/j.ydbio.2009.10.026. S0012-1606(09)01285-8 [pii]. PubMed PMID: 19854168; PubMed Central PMCID: 2854274

    Article  CAS  PubMed  Google Scholar 

  26. A.A. Thomson, P.C. Marker, Branching morphogenesis in the prostate gland and seminal vesicles. Differentiation 74(7), 382–392 (2006). https://doi.org/10.1111/j.1432-0436.2006.00101.x. S0301-4681(09)60225-5 [pii]. PubMed PMID: 16916376

    Article  CAS  PubMed  Google Scholar 

  27. S.J. Assinder, Q. Dong, Z. Kovacevic, D.R. Richardson, The TGF-beta, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochem. J. 417(2), 411–421 (2009). https://doi.org/10.1042/BJ20081610. PubMed PMID: 19099539

    Article  CAS  PubMed  Google Scholar 

  28. D. Bello-DeOcampo, D.J. Tindall, TGF-betal/Smad signaling in prostate cancer. Curr. Drug Targets 4(3), 197–207 (2003). PubMed PMID: 12643470

    Article  CAS  PubMed  Google Scholar 

  29. S. Kambhampati, G. Ray, K. Sengupta, V.P. Reddy, S.K. Banerjee, P.J. Van Veldhuizen, Growth factors involved in prostate carcinogenesis. Front. Biosci. 10, 1355–1367 (2005). PubMed PMID: 15769631

    Article  CAS  PubMed  Google Scholar 

  30. M. Mimeault, S.K. Batra, Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis 27(1), 1–22 (2006). https://doi.org/10.1093/carcin/bgi229. PubMed PMID: 16195239

    Article  CAS  PubMed  Google Scholar 

  31. D.G. Bostwick, Progression of prostatic intraepithelial neoplasia to early invasive adenocarcinoma. Eur. Urol. 30(2), 145–152 (1996). PubMed PMID: 8875195

    Article  CAS  PubMed  Google Scholar 

  32. M. Wang, R.B. Nagle, B.S. Knudsen, G.C. Rogers, A.E. Cress, A basal cell defect promotes budding of prostatic intraepithelial neoplasia. J. Cell Sci. 130(1), 104–110 (2017). https://doi.org/10.1242/jcs.188177. PubMed PMID: 27609833; PubMed Central PMCID: PMC5394777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R.B. Nagle, J.D. Knox, C. Wolf, G.T. Bowden, A.E. Cress, Adhesion molecules, extracellular matrix, and proteases in prostate carcinoma. J. Cell. Biochem. Suppl. 19, 232–237 (1994). PubMed PMID: 7823596

    CAS  PubMed  Google Scholar 

  34. D.E. Discher, P. Janmey, Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005). https://doi.org/10.1126/science.1116995. PubMed PMID: 16293750

    Article  CAS  PubMed  Google Scholar 

  35. E. You, Y.H. Huh, A. Kwon, S.H. Kim, I.H. Chae, O.J. Lee, J.H. Ryu, M.H. Park, G.E. Kim, J.S. Lee, K.H. Lee, Y.S. Lee, J.W. Kim, S. Rhee, W.K. Song, SPIN90 depletion and microtubule acetylation mediate stromal fibroblast activation in breast cancer progression. Cancer Res. 77(17), 4710–4722 (2017). https://doi.org/10.1158/0008-5472.Can-17-0657. PubMed PMID: 28652253

    Article  CAS  PubMed  Google Scholar 

  36. S. Eggener, The role of magnetic resonance image guided prostate biopsy in stratifying men for risk of extracapsular extension at radical prostatectomy. Raskolnikov D, George AK, Rais-Bahrami S, Turkbey B, Siddiqui MM, Shakir NA, Okoro C, Rothwax JT, Walton-Diaz A, Sankineni S, Su D, Stamatakis L, Merino MJ, Choyke PL, Wood BJ, Pinto PA. J Urol. 2015;194(1):105-11. Urol. Oncol. 35(3), 121 (2017). https://doi.org/10.1016/j.urolonc.2016.12.013. PubMed PMID: 28159491

    Article  Google Scholar 

  37. A.D. De Vivar, M. Sayeeduddin, D. Rowley, A. Cubilla, B. Miles, D. Kadmon, G. Ayala, Histologic features of stromogenic carcinoma of the prostate (carcinomas with reactive stroma grade 3). Hum. Pathol. 63, 202–211 (2017). https://doi.org/10.1016/j.humpath.2017.02.019. PubMed PMID: 28315427

    Article  CAS  PubMed  Google Scholar 

  38. I.C. Sroka, T.A. Anderson, K.M. McDaniel, R.B. Nagle, M.B. Gretzer, A.E. Cress, The laminin binding integrin α6β1 in prostate cancer perineural invasion. J. Cell. Physiol. 224(2), 283–288 (2010). https://doi.org/10.1002/jcp.22149. PubMed PMID: 20432448; PubMed Central PMCID: PMC4816210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y.H. Park, H.W. Shin, A.R. Jung, O.S. Kwon, Y.J. Choi, J. Park, J.Y. Lee, Prostate-specific extracellular vesicles as a novel biomarker in human prostate cancer. Sci. Rep. 6, 30386 (2016). https://doi.org/10.1038/srep30386. PubMed PMID: 27503267; PubMed Central PMCID: PMC4977541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. C.N. Biggs, K.M. Siddiqui, A.A. Al-Zahrani, S. Pardhan, S.I. Brett, Q.Q. Guo, J. Yang, P. Wolf, N.E. Power, P.N. Durfee, C.D. MacMillan, J.L. Townson, J.C. Brinker, N.E. Fleshner, J.I. Izawa, A.F. Chambers, J.L. Chin, H.S. Leong, Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget 7(8), 8839–8849 (2016). https://doi.org/10.18632/oncotarget.6983. PubMed PMID: 26814433; PubMed Central PMCID: PMC4891008

    Article  PubMed  PubMed Central  Google Scholar 

  41. I. Eke, A.Y. Makinde, M.J. Aryankalayil, J.L. Reedy, D.E. Citrin, S. Chopra, M.M. Ahmed, C.N. Coleman, Long-term tumor adaptation after radiotherapy: therapeutic implications for targeting integrins in prostate cancer. Mol. Cancer Res. 16(12), 1855–1864 (2018). https://doi.org/10.1158/1541-7786.Mcr-18-0232. PubMed PMID: 30042176; PubMed Central PMCID: PMC6279542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. W.W. Tan, Prostate Cancer Treatment Protocols [web page]. Medscape; 2018 [updated May 25, 2018; cited 2018 November 4]. Available from: https://emedicine.medscape.com/article/2007095-overview

  43. E.S. Antonarakis, C. Lu, H. Wang, B. Luber, M. Nakazawa, J.C. Roeser, Y. Chen, T.A. Mohammad, Y. Chen, H.L. Fedor, T.L. Lotan, Q. Zheng, A.M. De Marzo, J.T. Isaacs, W.B. Isaacs, R. Nadal, C.J. Paller, S.R. Denmeade, M.A. Carducci, M.A. Eisenberger, J. Luo, AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371(11), 1028–1038 (2014). https://doi.org/10.1056/NEJMoa1315815. PubMed PMID: 25184630; PubMed Central PMCID: PMC4201502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H.I. Scher, K. Fizazi, F. Saad, M.E. Taplin, C.N. Sternberg, K. Miller, R. de Wit, P. Mulders, K.N. Chi, N.D. Shore, A.J. Armstrong, T.W. Flaig, A. Flechon, P. Mainwaring, M. Fleming, J.D. Hainsworth, M. Hirmand, B. Selby, L. Seely, J.S. de Bono, Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367(13), 1187–1197 (2012). https://doi.org/10.1056/NEJMoa1207506. PubMed PMID: 22894553

    Article  CAS  PubMed  Google Scholar 

  45. J.S. de Bono, C.J. Logothetis, A. Molina, K. Fizazi, S. North, L. Chu, K.N. Chi, R.J. Jones, O.B. Goodman Jr., F. Saad, J.N. Staffurth, P. Mainwaring, S. Harland, T.W. Flaig, T.E. Hutson, T. Cheng, H. Patterson, J.D. Hainsworth, C.J. Ryan, C.N. Sternberg, S.L. Ellard, A. Fléchon, M. Saleh, M. Scholz, E. Efstathiou, A. Zivi, D. Bianchini, Y. Loriot, N. Chieffo, T. Kheoh, C.M. Haqq, H.I. Scher, COU-AA-301 Investigators, Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364(21), 1995–2005 (2011). https://doi.org/10.1056/NEJMoa1014618. PubMed PMID: 21612468; PubMed Central PMCID: PMC3471149

    Article  PubMed  PubMed Central  Google Scholar 

  46. M.Y. Teo, D.E. Rathkopf, P. Kantoff, Treatment of advanced prostate cancer. Annu. Rev. Med. 70, 479–499 (2019). https://doi.org/10.1146/annurev-med-051517-011947. PubMed PMID: 30691365; PubMed Central PMCID: PMC6441973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C.M. Nelson, M.J. Bissell, Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15(5), 342–352 (2005). https://doi.org/10.1016/j.semcancer.2005.05.001. PubMed PMID: 15963732; PubMed Central PMCID: PMC2933210

    Article  PubMed  PubMed Central  Google Scholar 

  48. M. Wang, N. Janaki, C. Buzzy, L. Bukavina, A. Mahran, K. Mishra, G. MacLennan, L. Ponsky, Whole mount histopathological correlation with prostate MRI in Grade I and II prostatectomy patients. Int. Urol. Nephrol. 51, 425 (2019). https://doi.org/10.1007/s11255-019-02083-8. PubMed PMID: 30671889

    Article  PubMed  Google Scholar 

  49. S.B. Shappell, G.V. Thomas, R.L. Roberts, R. Herbert, M.M. Ittmann, M.A. Rubin, P.A. Humphrey, J.P. Sundberg, N. Rozengurt, R. Barrios, J.M. Ward, R.D. Cardiff, Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64(6), 2270–2305 (2004). PubMed PMID: 15026373

    Article  CAS  PubMed  Google Scholar 

  50. A. Pozzi, P.D. Yurchenco, R.V. Iozzo, The nature and biology of basement membranes. Matrix Biol. 57-58, 1–11 (2017). https://doi.org/10.1016/j.matbio.2016.12.009. PubMed PMID: 28040522; PubMed Central PMCID: PMC5387862

    Article  CAS  PubMed  Google Scholar 

  51. M.J. Humphries, Integrin structure. Biochem. Soc. Trans. 28(4), 311–339 (2000). PubMed PMID: 10961914

    Article  CAS  PubMed  Google Scholar 

  52. A. Sonnenberg, Integrins and their ligands. Curr. Top. Microbiol. Immunol. 184, 7–35 (1993). PubMed PMID: 8313723

    CAS  PubMed  Google Scholar 

  53. A. van der Flier, A. Sonnenberg, Function and interactions of integrins. Cell Tissue Res. 305(3), 285–298 (2001). PubMed PMID: 11572082

    Article  PubMed  Google Scholar 

  54. R.O. Hynes, Integrins: bidirectional, allosteric signaling machines. Cell 110(6), 673–687 (2002). PubMed PMID: 12297042

    Article  CAS  PubMed  Google Scholar 

  55. Y. Takada, X. Ye, S. Simon, The integrins. Genome Biol. 8(5), 215 (2007). https://doi.org/10.1186/gb-2007-8-5-215. PubMed PMID: 17543136; PubMed Central PMCID: PMC1929136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A.L. Hughes, Evolution of the integrin alpha and beta protein families. J. Mol. Evol. 52(1), 63–72 (2001). PubMed PMID: 11139295

    Article  CAS  PubMed  Google Scholar 

  57. M. Huhtala, J. Heino, D. Casciari, A. de Luise, M.S. Johnson, Integrin evolution: insights from ascidian and teleost fish genomes. Matrix Biol. 24(2), 83–95 (2005). https://doi.org/10.1016/j.matbio.2005.01.003. PubMed PMID: 15890260

    Article  CAS  PubMed  Google Scholar 

  58. A.E. Cress, I. Rabinovitz, W. Zhu, R.B. Nagle, The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev. 14(3), 219–228 (1995). PubMed PMID: 8548870

    Article  CAS  PubMed  Google Scholar 

  59. M. Schmelz, A.E. Cress, K.M. Scott, F. Burger, H. Cui, K. Sallam, K.M. McDaniel, B.L. Dalkin, R.B. Nagle, Different phenotypes in human prostate cancer: alpha6 or alpha3 integrin in cell-extracellular adhesion sites. Neoplasia 4(3), 243–254 (2002). https://doi.org/10.1038/sj/neo/7900223. PubMed PMID: 11988844; PubMed Central PMCID: 1531698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. A.M. Mercurio, R.E. Bachelder, I. Rabinovitz, K.L. O’Connor, T. Tani, L.M. Shaw, The metastatic odyssey: the integrin connection. Surg. Oncol. Clin. N. Am. 10(2), 313–328 (2001). viii-ix. PubMed PMID: 11382589

    Article  CAS  PubMed  Google Scholar 

  61. M. Fornaro, T. Manes, L.R. Languino, Integrins and prostate cancer metastases. Cancer Metastasis Rev. 20(3-4), 321–331 (2001). PubMed PMID: 12085969

    Article  CAS  PubMed  Google Scholar 

  62. H.L. Goel, J. Li, S. Kogan, L.R. Languino, Integrins in prostate cancer progression. Endocr. Relat. Cancer 15(3), 657–664 (2008). https://doi.org/10.1677/ERC-08-0019. ERC-08-0019 [pii]. PubMed PMID: 18524948; PubMed Central PMCID: 2668544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. J. Liu, P.B. Gurpur, S.J. Kaufman, Genetically determined proteolytic cleavage modulates alpha7beta1 integrin function. J. Biol. Chem. 283(51), 35668–35678 (2008). https://doi.org/10.1074/jbc.M804661200. PubMed PMID: 18940796; PubMed Central PMCID: PMC2602887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. M.O. Ports, R.B. Nagle, G.D. Pond, A.E. Cress, Extracellular engagement of alpha6 integrin inhibited urokinase-type plasminogen activator-mediated cleavage and delayed human prostate bone metastasis. Cancer Res. 69(12), 5007–5014 (2009). https://doi.org/10.1158/0008-5472.can-09-0354. PubMed PMID: 19491258; PubMed Central PMCID: PMC2697270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. T.L. Davis, A.E. Cress, B.L. Dalkin, R.B. Nagle, Unique expression pattern of the alpha6beta4 integrin and laminin-5 in human prostate carcinoma. Prostate 46(3), 240–248 (2001). PubMed PMID: 11170153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. M.V. Allen, G.J. Smith, R. Juliano, S.J. Maygarden, J.L. Mohler, Downregulation of the beta4 integrin subunit in prostatic carcinoma and prostatic intraepithelial neoplasia. Hum. Pathol. 29(4), 311–318 (1998). PubMed PMID: 9563778

    Article  CAS  PubMed  Google Scholar 

  67. R.B. Nagle, J. Hao, J.D. Knox, B.L. Dalkin, V. Clark, A.E. Cress, Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am. J. Pathol. 146(6), 1498–1507 (1995). PubMed PMID: 7778688; PubMed Central PMCID: 1870922

    CAS  PubMed  PubMed Central  Google Scholar 

  68. E. Ricci, E. Mattei, C. Dumontet, C.L. Eaton, F. Hamdy, G. van der Pluije, M. Cecchini, G. Thalmann, P. Clezardin, M. Colombel, Increased expression of putative cancer stem cell markers in the bone marrow of prostate cancer patients is associated with bone metastasis progression. Prostate 73(16), 1738–1746 (2013). https://doi.org/10.1002/pros.22689. PubMed PMID: 24115186

    Article  CAS  PubMed  Google Scholar 

  69. D.A. Lawson, Y. Zong, S. Memarzadeh, L. Xin, J. Huang, O.N. Witte, Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl. Acad. Sci. U. S. A. 107(6), 2610–2615 (2010). https://doi.org/10.1073/pnas.0913873107. PubMed PMID: 20133806; PubMed Central PMCID: PMC2823887

    Article  PubMed  PubMed Central  Google Scholar 

  70. M.C. Demetriou, K.A. Kwei, M.B. Powell, R.B. Nagle, G.T. Bowden, A.E. Cress, Integrin A6 cleavage in mouse skin tumors. Open Cancer J. 2, 1–4 (2008). https://doi.org/10.2174/1874079000802010001. PubMed PMID: 20664806; PubMed Central PMCID: PMC2906811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. I.C. Sroka, H. Chopra, L. Das, J.M. Gard, R.B. Nagle, A.E. Cress, Schwann cells increase prostate and pancreatic tumor cell invasion using laminin binding A6 integrin. J. Cell. Biochem. 117(2), 491–499 (2016). https://doi.org/10.1002/jcb.25300. PubMed PMID: 26239765; PubMed Central PMCID: PMC4809241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. I.C. Sroka, C.P. Sandoval, H. Chopra, J.M. Gard, S.C. Pawar, A.E. Cress, Macrophage-dependent cleavage of the laminin receptor alpha6beta1 in prostate cancer. Mol. Cancer Res. 9(10), 1319–1328 (2011). https://doi.org/10.1158/1541-7786.mcr-11-0080. PubMed PMID: 21824975; PubMed Central PMCID: PMC3196809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. T.E. King, S.C. Pawar, L. Majuta, I.C. Sroka, D. Wynn, M.C. Demetriou, R.B. Nagle, F. Porreca, A.E. Cress, The role of alpha 6 integrin in prostate cancer migration and bone pain in a novel xenograft model. PLoS One 3(10), e3535 (2008). https://doi.org/10.1371/journal.pone.0003535. PubMed PMID: 18958175; PubMed Central PMCID: PMC2570216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. T.H. Landowski, J. Gard, E. Pond, G.D. Pond, R.B. Nagle, C.P. Geffre, A.E. Cress, Targeting integrin alpha6 stimulates curative-type bone metastasis lesions in a xenograft model. Mol. Cancer Ther. 13(6), 1558–1566 (2014). https://doi.org/10.1158/1535-7163.mct-13-0962. PubMed PMID: 24739392; PubMed Central PMCID: PMC4069206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. S.C. Pawar, S. Dougherty, M.E. Pennington, M.C. Demetriou, B.D. Stea, R.T. Dorr, A.E. Cress, alpha6 integrin cleavage: sensitizing human prostate cancer to ionizing radiation. Int. J. Radiat. Biol. 83(11-12), 761–767 (2007). https://doi.org/10.1080/09553000701633135. 787782677 [pii]. PubMed PMID: 18058365; PubMed Central PMCID: 2732343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. M.F. Emmons, A.W. Gebhard, R.R. Nair, R. Baz, M.L. McLaughlin, A.E. Cress, L.A. Hazlehurst, Acquisition of resistance toward HYD1 correlates with a reduction in cleaved alpha4 integrin expression and a compromised CAM-DR phenotype. Mol. Cancer Ther. 10(12), 2257–2266 (2011). https://doi.org/10.1158/1535-7163.mct-11-0149. PubMed PMID: 21980133; PubMed Central PMCID: PMC3237739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. W.L. Harryman, J.P. Hinton, C.P. Rubenstein, P. Singh, R.B. Nagle, S.J. Parker, B.S. Knudsen, A.E. Cress, The cohesive metastasis phenotype in human prostate cancer. Biochim. Biophys. Acta 1866(2), 221–231 (2016). https://doi.org/10.1016/j.bbcan.2016.09.005. PubMed PMID: 27678419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. M.R. Clay, D.R. Sherwood, Basement membranes in the worm: a dynamic scaffolding that instructs cellular behaviors and shapes tissues. Curr. Top. Membr. 76, 337–371 (2015). https://doi.org/10.1016/bs.ctm.2015.08.001. PubMed PMID: 26610919; PubMed Central PMCID: PMC4697865

    Article  PubMed  PubMed Central  Google Scholar 

  79. J. McCandless, A. Cress, I. Rabinovitz, C. Payne, G. Bowden, J. Knox, R. Nagle, A human xenograft model for testing early events of epithelial neoplastic invasion. Int. J. Oncol. 10(2), 279–285 (1997). PubMed PMID: 21533373; PubMed Central PMCID: PMC5390482

    CAS  PubMed  Google Scholar 

  80. T. Welz, J. Wellbourne-Wood, E. Kerkhoff, Orchestration of cell surface proteins by Rab11. Trends Cell Biol. 24(7), 407–415 (2014). https://doi.org/10.1016/j.tcb.2014.02.004. PubMed PMID: 24675420

    Article  CAS  PubMed  Google Scholar 

  81. N.W. Baetz, J.R. Goldenring, Rab11-family interacting proteins define spatially and temporally distinct regions within the dynamic Rab11a-dependent recycling system. Mol. Biol. Cell 24(5), 643–658 (2013). https://doi.org/10.1091/mbc.E12-09-0659. PubMed PMID: 23283983; PubMed Central PMCID: PMC3583667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. P.T. Caswell, S. Vadrevu, J.C. Norman, Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10(12), 843–853 (2009). https://doi.org/10.1038/nrm2799. PubMed PMID: 19904298

    Article  CAS  PubMed  Google Scholar 

  83. S.O. Yoon, S. Shin, A.M. Mercurio, Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res. 65(7), 2761–2769 (2005). https://doi.org/10.1158/0008-5472.can-04-4122. PubMed PMID: 15805276

    Article  CAS  PubMed  Google Scholar 

  84. C.P. Horgan, M.W. McCaffrey, The dynamic Rab11-FIPs. Biochem. Soc. Trans. 37(Pt 5), 1032–1036 (2009). https://doi.org/10.1042/bst0371032. PubMed PMID: 19754446

    Article  CAS  PubMed  Google Scholar 

  85. B. Movsas, J.D. Chapman, R.E. Greenberg, A.L. Hanlon, E.M. Horwitz, W.H. Pinover, C. Stobbe, G.E. Hanks, Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age: an Eppendorf pO(2) study. Cancer 89(9), 2018–2024 (2000). PubMed PMID: 11064360

    Article  CAS  PubMed  Google Scholar 

  86. R. Vergis, C.M. Corbishley, A.R. Norman, J. Bartlett, S. Jhavar, M. Borre, S. Heeboll, A. Horwich, R. Huddart, V. Khoo, R. Eeles, C. Cooper, M. Sydes, D. Dearnaley, C. Parker, Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 9(4), 342–351 (2008). https://doi.org/10.1016/s1470-2045(08)70076-7. PubMed PMID: 18343725

    Article  PubMed  Google Scholar 

  87. G.D. Stewart, K. Gray, C.J. Pennington, D.R. Edwards, A.C. Riddick, J.A. Ross, F.K. Habib, Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. Oncol. Rep. 20(6), 1561–1567 (2008). PubMed PMID: 19020742

    CAS  PubMed  Google Scholar 

  88. S. Supiot, C. Rousseau, M. Dore, C. Cheze-Le-Rest, C. Kandel-Aznar, V. Potiron, S. Guerif, F. Paris, L. Ferrer, L. Campion, P. Meingan, G. Delpon, M. Hatt, D. Visvikis, Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using (18)F-fluoromisonidazole PET/CT: a pilot study. Oncotarget 9(11), 10005–10015 (2018). https://doi.org/10.18632/oncotarget.24234. PubMed PMID: 29515786; PubMed Central PMCID: PMC5839367

    Article  PubMed  PubMed Central  Google Scholar 

  89. M.R. Horsman, L.S. Mortensen, J.B. Petersen, M. Busk, J. Overgaard, Imaging hypoxia to improve radiotherapy outcome. Nat. Rev. Clin. Oncol. 9(12), 674–687 (2012). https://doi.org/10.1038/nrclinonc.2012.171. PubMed PMID: 23149893

    Article  CAS  PubMed  Google Scholar 

  90. E.E. Parent, D.M. Schuster, Update on (18)F-fluciclovine PET for prostate cancer imaging. J. Nucl. Med. 59(5), 733–739 (2018). https://doi.org/10.2967/jnumed.117.204032. PubMed PMID: 29523631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. M. Milosevic, P. Warde, C. Menard, P. Chung, A. Toi, A. Ishkanian, M. McLean, M. Pintilie, J. Sykes, M. Gospodarowicz, C. Catton, R.P. Hill, R. Bristow, Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin. Cancer Res. 18(7), 2108–2114 (2012). https://doi.org/10.1158/1078-0432.Ccr-11-2711. PubMed PMID: 22465832

    Article  CAS  PubMed  Google Scholar 

  92. M. Milosevic, P. Chung, C. Parker, R. Bristow, A. Toi, T. Panzarella, P. Warde, C. Catton, C. Menard, A. Bayley, M. Gospodarowicz, R. Hill, Androgen withdrawal in patients reduces prostate cancer hypoxia: implications for disease progression and radiation response. Cancer Res. 67(13), 6022–6025 (2007). https://doi.org/10.1158/0008-5472.Can-07-0561. PubMed PMID: 17616657

    Article  CAS  PubMed  Google Scholar 

  93. T. Hompland, K.H. Hole, H.B. Ragnum, E.K. Aarnes, L. Vlatkovic, A.K. Lie, S. Patzke, B. Brennhovd, T. Seierstad, H. Lyng, Combined MR imaging of oxygen consumption and supply reveals tumor hypoxia and aggressiveness in prostate cancer patients. Cancer Res. 78(16), 4774–4785 (2018). https://doi.org/10.1158/0008-5472.Can-17-3806. PubMed PMID: 29945958

    Article  CAS  PubMed  Google Scholar 

  94. L. Yang, D. Roberts, M. Takhar, N. Erho, B.A.S. Bibby, N. Thiruthaneeswaran, V. Bhandari, W.C. Cheng, S. Haider, A.M.B. McCorry, D. McArt, S. Jain, M. Alshalalfa, A. Ross, E. Schaffer, R.B. Den, R. Jeffrey Karnes, E. Klein, P.J. Hoskin, S.J. Freedland, A.D. Lamb, D.E. Neal, F.M. Buffa, R.G. Bristow, P.C. Boutros, E. Davicioni, A. Choudhury, C.M.L. West, Development and validation of a 28-gene hypoxia-related prognostic signature for localized prostate cancer. EBioMedicine 31, 182–189 (2018). https://doi.org/10.1016/j.ebiom.2018.04.019. PubMed PMID: 29729848; PubMed Central PMCID: PMC6014579

    Article  PubMed  PubMed Central  Google Scholar 

  95. N. Grivas, A. Goussia, D. Stefanou, D. Giannakis, Microvascular density and immunohistochemical expression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. C. Eur. J. Urol. 69(1), 63–71 (2016). https://doi.org/10.5173/ceju.2016.726. PubMed PMID: 27123329; PubMed Central PMCID: PMC4846728

    Article  CAS  Google Scholar 

  96. D.C. Weber, J.C. Tille, C. Combescure, J.F. Egger, M. Laouiti, K. Hammad, P. Granger, L. Rubbia-Brandt, R. Miralbell, The prognostic value of expression of HIF1alpha, EGFR and VEGF-A, in localized prostate cancer for intermediate- and high-risk patients treated with radiation therapy with or without androgen deprivation therapy. Rad. Oncol. 7, 66 (2012). https://doi.org/10.1186/1748-717x-7-66. PubMed PMID: 22546016; PubMed Central PMCID: PMC3432017

    Article  Google Scholar 

  97. A.C. Small, W.K. Oh, Bevacizumab treatment of prostate cancer. Expert Opin. Biol. Ther. 12(9), 1241–1249 (2012). https://doi.org/10.1517/14712598.2012.704015. PubMed PMID: 22775507

    Article  CAS  PubMed  Google Scholar 

  98. I.F. Tannock, K. Fizazi, S. Ivanov, C.T. Karlsson, A. Flechon, I. Skoneczna, F. Orlandi, G. Gravis, V. Matveev, S. Bavbek, T. Gil, L. Viana, O. Aren, O. Karyakin, T. Elliott, A. Birtle, E. Magherini, L. Hatteville, D. Petrylak, B. Tombal, M. Rosenthal, Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): a phase 3, double-blind randomised trial. Lancet Oncol. 14(8), 760–768 (2013). https://doi.org/10.1016/s1470-2045(13)70184-0. PubMed PMID: 23742877

    Article  CAS  PubMed  Google Scholar 

  99. N.A. Warfel, A.G. Sainz, J.H. Song, A.S. Kraft, PIM kinase inhibitors kill hypoxic tumor cells by reducing Nrf2 signaling and increasing reactive oxygen species. Mol. Cancer Ther. 15(7), 1637–1647 (2016). https://doi.org/10.1158/1535-7163.Mct-15-1018. PubMed PMID: 27196781; PubMed Central PMCID: PMC4936950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. M. Hara, T. Nagasaki, K. Shiga, H. Takahashi, H. Takeyama, High serum levels of interleukin-6 in patients with advanced or metastatic colorectal cancer: the effect on the outcome and the response to chemotherapy plus bevacizumab. Surg. Today 47(4), 483–489 (2017). https://doi.org/10.1007/s00595-016-1404-7. PubMed PMID: 27549777

    Article  CAS  PubMed  Google Scholar 

  101. H.L. Goel, B. Pursell, L.D. Shultz, D.L. Greiner, R.A. Brekken, C.W. Vander Kooi, A.M. Mercurio, P-Rex1 promotes resistance to VEGF/VEGFR-targeted therapy in prostate cancer. Cell Rep. 14(9), 2193–2208 (2016). https://doi.org/10.1016/j.celrep.2016.02.016. PubMed PMID: 26923603; PubMed Central PMCID: PMC4791963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. A.L. Casillas, R.K. Toth, A.G. Sainz, N. Singh, A.A. Desai, A.S. Kraft, N.A. Warfel, Hypoxia-inducible PIM kinase expression promotes resistance to antiangiogenic agents. Clin. Cancer Res. 24(1), 169–180 (2018). https://doi.org/10.1158/1078-0432.Ccr-17-1318. PubMed PMID: 29084916; PubMed Central PMCID: PMC6214353

    Article  CAS  PubMed  Google Scholar 

  103. J.W. Franses, A.B. Baker, V.C. Chitalia, E.R. Edelman, Stromal endothelial cells directly influence cancer progression. Sci. Transl. Med. 3(66), 66ra5 (2011). https://doi.org/10.1126/scitranslmed.3001542. PubMed PMID: 21248315; PubMed Central PMCID: PMC3076139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. R. Schietke, C. Warnecke, I. Wacker, J. Schodel, D.R. Mole, V. Campean, K. Amann, M. Goppelt-Struebe, J. Behrens, K.U. Eckardt, M.S. Wiesener, The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J. Biol. Chem. 285(9), 6658–6669 (2010). https://doi.org/10.1074/jbc.M109.042424. PubMed PMID: 20026874; PubMed Central PMCID: PMC2825461

    Article  CAS  PubMed  Google Scholar 

  105. D.R. Hurst, D.R. Welch, Metastasis suppressor genes at the interface between the environment and tumor cell growth. Int. Rev. Cell Mol. Biol. 286, 107–180 (2011). https://doi.org/10.1016/b978-0-12-385859-7.00003-3. PubMed PMID: 21199781; PubMed Central PMCID: PMC3575029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. M.A. Rubin, N.R. Mucci, J. Figurski, A. Fecko, K.J. Pienta, M.L. Day, E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum. Pathol. 32(7), 690–697 (2001). https://doi.org/10.1053/hupa.2001.25902. PubMed PMID: 11486167

    Article  CAS  PubMed  Google Scholar 

  107. L. Fan, H. Wang, X. Xia, Y. Rao, X. Ma, D. Ma, P. Wu, G. Chen, Loss of E-cadherin promotes prostate cancer metastasis via upregulation of metastasis-associated gene 1 expression. Oncol. Lett. 4(6), 1225–1233 (2012). https://doi.org/10.3892/ol.2012.934. PubMed PMID: 23205121; PubMed Central PMCID: PMC3506747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. T.T. Onder, P.B. Gupta, S.A. Mani, J. Yang, E.S. Lander, R.A. Weinberg, Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68(10), 3645–3654 (2008). https://doi.org/10.1158/0008-5472.Can-07-2938. PubMed PMID: 18483246

    Article  CAS  PubMed  Google Scholar 

  109. D. Kong, Y. Li, Z. Wang, S. Banerjee, A. Ahmad, H.R. Kim, F.H. Sarkar, miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 27(8), 1712–1721 (2009). https://doi.org/10.1002/stem.101. PubMed PMID: 19544444; PubMed Central PMCID: PMC3400149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. K.A. Pillman, C.A. Phillips, S. Roslan, J. Toubia, B.K. Dredge, A.G. Bert, R. Lumb, D.P. Neumann, X. Li, S.J. Conn, D. Liu, C.P. Bracken, D.M. Lawrence, N. Stylianou, A.W. Schreiber, W.D. Tilley, B.G. Hollier, Y. Khew-Goodall, L.A. Selth, G.J. Goodall, P.A. Gregory, miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking. EMBO J. 37(13), e99016 (2018). https://doi.org/10.15252/embj.201899016. PubMed PMID: 29871889; PubMed Central PMCID: PMC6028027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. L.E. Lamb, B.S. Knudsen, C.K. Miranti, E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J. Cell Sci. 123(Pt 2), 266–276 (2010). https://doi.org/10.1242/jcs.054502. PubMed PMID: 20048343

    Article  CAS  PubMed  Google Scholar 

  112. B.S.M.C. Knudsen, The impact of cell adhesion changes on proliferation and survival during prostate cancer development and progression. J. Cell. Biochem. 99(2), 345–361 (2006). https://doi.org/10.1002/jcb.20934. PubMed PMID: 16676354

    Article  CAS  PubMed  Google Scholar 

  113. A.M. De Marzo, B. Knudsen, K. Chan-Tack, J.I. Epstein, E-cadherin expression as a marker of tumor aggressiveness in routinely processed radical prostatectomy specimens. Urology 53(4), 707–713 (1999). PubMed PMID: 10197845

    Article  PubMed  Google Scholar 

  114. J. Pontes-Junior, S.T. Reis, M. Dall’Oglio, L.C. Neves de Oliveira, J. Cury, P.A. Carvalho, L.A. Ribeiro-Filho, K.R. Moreira Leite, M. Srougi, Evaluation of the expression of integrins and cell adhesion molecules through tissue microarray in lymph node metastases of prostate cancer. J. Carcinogen. 8, 3 (2009). PubMed PMID: 19240373; PubMed Central PMCID: PMC2678866

    Article  Google Scholar 

  115. P. Friedl, D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10(7), 445–457 (2009). https://doi.org/10.1038/nrm2720. PubMed PMID: 19546857

    Article  CAS  PubMed  Google Scholar 

  116. E.R. Shamir, A.J. Ewald, Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr. Top. Dev. Biol. 112, 353–382 (2015). https://doi.org/10.1016/bs.ctdb.2014.12.001. PubMed PMID: 25733146; PubMed Central PMCID: PMC4696070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. R. Mayor, S. Etienne-Manneville, The front and rear of collective cell migration. Nat. Rev. Mol. Cell Biol. 17(2), 97–109 (2016). https://doi.org/10.1038/nrm.2015.14. PubMed PMID: 26726037

    Article  CAS  PubMed  Google Scholar 

  118. A.A. Khalil, J. de Rooij, Cadherin mechanotransduction in leader-follower cell specification during collective migration. Exp. Cell Res. 376, 86 (2019). https://doi.org/10.1016/j.yexcr.2019.01.006. PubMed PMID: 30633881

    Article  CAS  PubMed  Google Scholar 

  119. S. Lehmann, V. Te Boekhorst, J. Odenthal, R. Bianchi, S. van Helvert, K. Ikenberg, O. Ilina, S. Stoma, J. Xandry, L. Jiang, R. Grenman, M. Rudin, P. Friedl, Hypoxia induces a HIF-1-dependent transition from collective-to-amoeboid dissemination in epithelial cancer cells. Curr. Biol. 27(3), 392–400 (2017). https://doi.org/10.1016/j.cub.2016.11.057. PubMed PMID: 28089517

    Article  CAS  PubMed  Google Scholar 

  120. M.F. Penet, S. Kakkad, A.P. Pathak, B. Krishnamachary, Y. Mironchik, V. Raman, M. Solaiyappan, Z.M. Bhujwalla, Structure and function of a prostate cancer dissemination-permissive extracellular matrix. Clin. Cancer Res. 23(9), 2245–2254 (2017). https://doi.org/10.1158/1078-0432.Ccr-16-1516. PubMed PMID: 27799248; PubMed Central PMCID: PMC5411337

    Article  CAS  PubMed  Google Scholar 

  121. D. Schveigert, K.P. Valuckas, V. Kovalcis, A. Ulys, G. Chvatovic, J. Didziapetriene, Significance of MMP-9 expression and MMP-9 polymorphism in prostate cancer. Tumori 99(4), 523–529 (2013). https://doi.org/10.1700/1361.15105. PubMed PMID: 24326842

    Article  CAS  PubMed  Google Scholar 

  122. M. Wood, K. Fudge, J.L. Mohler, A.R. Frost, F. Garcia, M. Wang, M.E. Stearns, In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cancer. Clin. Exp. Metastasis 15(3), 246–258 (1997). PubMed PMID: 9174126

    Article  CAS  PubMed  Google Scholar 

  123. B.L. Lokeshwar, MMP inhibition in prostate cancer. Ann. N. Y. Acad. Sci. 878, 271–289 (1999). PubMed PMID: 10415736

    Article  CAS  PubMed  Google Scholar 

  124. P.J. Cozzi, J. Wang, W. Delprado, M.C. Madigan, S. Fairy, P.J. Russell, Y. Li, Evaluation of urokinase plasminogen activator and its receptor in different grades of human prostate cancer. Hum. Pathol. 37(11), 1442–1451 (2006). https://doi.org/10.1016/j.humpath.2006.05.002. PubMed PMID: 16949925

    Article  CAS  PubMed  Google Scholar 

  125. D. Trudel, Y. Fradet, F. Meyer, F. Harel, B. Tetu, Significance of MMP-2 expression in prostate cancer: an immunohistochemical study. Cancer Res. 63(23), 8511–8515 (2003). PubMed PMID: 14679018

    CAS  PubMed  Google Scholar 

  126. G. Sehgal, J. Hua, E.J. Bernhard, I. Sehgal, T.C. Thompson, R.J. Muschel, Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. Am. J. Pathol. 152(2), 591–596 (1998). PubMed PMID: 9466586; PubMed Central PMCID: PMC1857976

    CAS  PubMed  PubMed Central  Google Scholar 

  127. C.C. Lynch, A. Hikosaka, H.B. Acuff, M.D. Martin, N. Kawai, R.K. Singh, T.C. Vargo-Gogola, J.L. Begtrup, T.E. Peterson, B. Fingleton, T. Shirai, L.M. Matrisian, M. Futakuchi, MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7(5), 485–496 (2005). https://doi.org/10.1016/j.ccr.2005.04.013. PubMed PMID: 15894268

    Article  CAS  PubMed  Google Scholar 

  128. M.R. Ambrosio, C. Di Serio, G. Danza, B.J. Rocca, A. Ginori, I. Prudovsky, N. Marchionni, M.T. Del Vecchio, F. Tarantini, Carbonic anhydrase IX is a marker of hypoxia and correlates with higher Gleason scores and ISUP grading in prostate cancer. Diagn. Pathol. 11(1), 45 (2016). https://doi.org/10.1186/s13000-016-0495-1. PubMed PMID: 27225200; PubMed Central PMCID: PMC4880832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. V.A. Kobliakov, Role of proton pumps in tumorigenesis. Biochemistry 82(4), 401–412 (2017). https://doi.org/10.1134/s0006297917040010. PubMed PMID: 28371597

    Article  CAS  PubMed  Google Scholar 

  130. Y. Zhang, S. Nojima, H. Nakayama, Y. Jin, H. Enza, Characteristics of normal stromal components and their correlation with cancer occurrence in human prostate. Oncol. Rep. 10(1), 207–211 (2003). PubMed PMID: 12469170

    PubMed  Google Scholar 

  131. S.M. Kakkad, M. Solaiyappan, B. O’Rourke, I. Stasinopoulos, E. Ackerstaff, V. Raman, Z.M. Bhujwalla, K. Glunde, Hypoxic tumor microenvironments reduce collagen I fiber density. Neoplasia 12(8), 608–617 (2010). PubMed PMID: 20689755; PubMed Central PMCID: PMC2915405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. J.A. Ju, I. Godet, I.C. Ye, J. Byun, H. Jayatilaka, S.J. Lee, L. Xiang, D. Samanta, M.H. Lee, P.H. Wu, D. Wirtz, G.L. Semenza, D.M. Gilkes, Hypoxia selectively enhances integrin alpha5beta1 receptor expression in breast cancer to promote metastasis. Mol. Cancer Res. 15(6), 723–734 (2017). https://doi.org/10.1158/1541-7786.Mcr-16-0338. PubMed PMID: 28213554; PubMed Central PMCID: PMC5510543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. D.L. Brooks, L.P. Schwab, R. Krutilina, D.N. Parke, A. Sethuraman, D. Hoogewijs, A. Schorg, L. Gotwald, M. Fan, R.H. Wenger, T.N. Seagroves, ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol. Cancer 15, 26 (2016). https://doi.org/10.1186/s12943-016-0510-x. PubMed PMID: 27001172; PubMed Central PMCID: PMC4802728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. P. Muppa, S. Gupta, I. Frank, S.A. Boorjian, R.J. Karnes, R.H. Thompson, P. Thapa, R.F. Tarrell, L.P. Herrera Hernandez, R.E. Jimenez, J.C. Cheville, Prognostic significance of lymphatic, vascular and perineural invasion for bladder cancer patients treated by radical cystectomy. Pathology 49(3), 259–266 (2017). https://doi.org/10.1016/j.pathol.2016.12.347. PubMed PMID: 28259358

    Article  PubMed  Google Scholar 

  135. C. Liebig, G. Ayala, J.A. Wilks, D.H. Berger, D. Albo, Perineural invasion in cancer: a review of the literature. Cancer 115(15), 3379–3391 (2009). https://doi.org/10.1002/cncr.24396. PubMed PMID: 19484787

    Article  CAS  PubMed  Google Scholar 

  136. F. Marchesi, L. Piemonti, A. Mantovani, P. Allavena, Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 21(1), 77–82 (2010). https://doi.org/10.1016/j.cytogfr.2009.11.001. PubMed PMID: 20060768

    Article  CAS  PubMed  Google Scholar 

  137. M. Amit, S. Na’ara, Z. Gil, Mechanisms of cancer dissemination along nerves. Nat. Rev. Cancer 16(6), 399–408 (2016). https://doi.org/10.1038/nrc.2016.38. PubMed PMID: 27150016

    Article  CAS  PubMed  Google Scholar 

  138. A. Villers, J.E. McNeal, E.A. Redwine, F.S. Freiha, T.A. Stamey, The role of perineural space invasion in the local spread of prostatic adenocarcinoma. J. Urol. 142(3), 763–768 (1989). PubMed PMID: 2769857

    Article  CAS  PubMed  Google Scholar 

  139. A. Olar, D. He, D. Florentin, Y. Ding, T. Wheeler, G. Ayala, Biological correlates of prostate cancer perineural invasion diameter. Hum. Pathol. 45(7), 1365–1369 (2014). https://doi.org/10.1016/j.humpath.2014.02.011. PubMed PMID: 24768607; PubMed Central PMCID: PMC4492300

    Article  PubMed  PubMed Central  Google Scholar 

  140. S.H. Azam, C.V. Pecot, Cancer’s got nerve: Schwann cells drive perineural invasion. J. Clin. Invest. 126(4), 1242–1244 (2016). https://doi.org/10.1172/JCI86801. PubMed PMID: 26999601; PubMed Central PMCID: PMC4811122

    Article  PubMed  PubMed Central  Google Scholar 

  141. P. Zareba, R. Flavin, M. Isikbay, J.R. Rider, T.A. Gerke, S. Finn, A. Pettersson, F. Giunchi, R.H. Unger, A.M. Tinianow, S.-O. Andersson, O. Andrén, K. Fall, M. Fiorentino, L.A. Mucci, Perineural invasion and risk of lethal prostate cancer. Cancer Epidemiol. Biomarkers Prev. 26(5), 719–726 (2017). https://doi.org/10.1158/1055-9965.Epi-16-0237. PubMed PMID: 28062398; PubMed Central PMCID: PMC5413395

    Article  PubMed  PubMed Central  Google Scholar 

  142. R.D. Kraus, A. Barsky, L. Ji, P.M. Garcia Santos, N. Cheng, S. Groshen, N. Vapiwala, L.K. Ballas, The perineural invasion paradox: is perineural invasion an independent prognostic indicator of biochemical recurrence risk in patients with pT2N0R0 prostate cancer? A multi-institutional study. Adv. Rad. Oncol. 4(1), 96–102 (2019). https://doi.org/10.1016/j.adro.2018.09.006. PubMed PMID: 30706016; PubMed Central PMCID: PMC6349660

    Article  Google Scholar 

  143. N. Maru, M. Ohori, M.W. Kattan, P.T. Scardino, T.M. Wheeler, Prognostic significance of the diameter of perineural invasion in radical prostatectomy specimens. Hum. Pathol. 32(8), 828–833 (2001). https://doi.org/10.1053/hupa.2001.26456. PubMed PMID: 11521227

    Article  CAS  PubMed  Google Scholar 

  144. G.E. Ayala, H. Dai, M. Ittmann, R. Li, M. Powell, A. Frolov, T.M. Wheeler, T.C. Thompson, D. Rowley, Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res. 64(17), 6082–6090 (2004). https://doi.org/10.1158/0008-5472.Can-04-0838. PubMed PMID: 15342391

    Article  CAS  PubMed  Google Scholar 

  145. C. Stolinski, Structure and composition of the outer connective tissue sheaths of peripheral nerve. J. Anat. 186(Pt 1), 123–130 (1995). PubMed PMID: 7649808; PubMed Central PMCID: PMC1167278

    PubMed  PubMed Central  Google Scholar 

  146. Y. Olsson, Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit. Rev. Neurobiol. 5(3), 265–311 (1990). PubMed PMID: 2168810

    CAS  PubMed  Google Scholar 

  147. J. Heesakkers, F. Farag, R.M. Bauer, J. Sandhu, D. De Ridder, A. Stenzl, Pathophysiology and contributing factors in postprostatectomy incontinence: a review. Eur. Urol. 71(6), 936–944 (2017). https://doi.org/10.1016/j.eururo.2016.09.031. PubMed PMID: 27720536

    Article  PubMed  Google Scholar 

  148. M.L. Feltri, L. Wrabetz, Laminins and their receptors in Schwann cells and hereditary neuropathies. J. Peripher. Nerv. Syst. 10(2), 128–143 (2005). https://doi.org/10.1111/j.1085-9489.2005.0010204.x. PubMed PMID: 15958125

    Article  CAS  PubMed  Google Scholar 

  149. G.J. Kidd, N. Ohno, B.D. Trapp, Biology of Schwann cells, in Handbook of Clinical Neurology, ed. by C. K. Gérard Said, (Elsevier B.V., Amsterdam, 2013), pp. 55–79

    Google Scholar 

  150. T.L. Davis, I. Rabinovitz, B.W. Futscher, M. Schnolzer, F. Burger, Y. Liu, M. Kulesz-Martin, A.E. Cress, Identification of a novel structural variant of the alpha 6 integrin. J. Biol. Chem. 276(28), 26099–26106 (2001). https://doi.org/10.1074/jbc.M102811200. PubMed PMID: 11359780; PubMed Central PMCID: PMC2824502

    Article  CAS  PubMed  Google Scholar 

  151. M.C. Demetriou, A.E. Cress, Integrin clipping: a novel adhesion switch? J. Cell. Biochem. 91(1), 26–35 (2004). https://doi.org/10.1002/jcb.10675. PubMed PMID: 14689578; PubMed Central PMCID: PMC2702438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. P.A. Usher, O.F. Thomsen, P. Iversen, M. Johnsen, N. Brunner, G. Hoyer-Hansen, P. Andreasen, K. Dano, B.S. Nielsen, Expression of urokinase plasminogen activator, its receptor and type-1 inhibitor in malignant and benign prostate tissue. Int. J. Cancer 113(6), 870–880 (2005). https://doi.org/10.1002/ijc.20665. PubMed PMID: 15515049

    Article  CAS  PubMed  Google Scholar 

  153. M.C. Demetriou, M.E. Pennington, R.B. Nagle, A.E. Cress, Extracellular alpha 6 integrin cleavage by urokinase-type plasminogen activator in human prostate cancer. Exp. Cell Res. 294(2), 550–558 (2004). https://doi.org/10.1016/j.yexcr.2003.11.023. PubMed PMID: 15023541; PubMed Central PMCID: PMC2715336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. C. Rivellini, G. Dina, E. Porrello, F. Cerri, M. Scarlato, T. Domi, D. Ungaro, U. Del Carro, A. Bolino, A. Quattrini, G. Comi, S.C. Previtali, Urokinase plasminogen receptor and the fibrinolytic complex play a role in nerve repair after nerve crush in mice, and in human neuropathies. PLoS One 7(2), e32059 (2012). https://doi.org/10.1371/journal.pone.0032059. PubMed PMID: 22363796; PubMed Central PMCID: PMC3283718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. P. Merino, A. Diaz, V. Jeanneret, F. Wu, E. Torre, L. Cheng, M. Yepes, Urokinase-type plasminogen activator (uPA) binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system. J. Biol. Chem. 292(7), 2741–2753 (2017). https://doi.org/10.1074/jbc.M116.761650. PubMed PMID: 27986809; PubMed Central PMCID: PMC5314171

    Article  CAS  PubMed  Google Scholar 

  156. V. Vlaeminck-Guillem, Extracellular vesicles in prostate cancer carcinogenesis, diagnosis, and management. Front. Oncol. 8, 222 (2018). https://doi.org/10.3389/fonc.2018.00222. PubMed PMID: 29951375; PubMed Central PMCID: PMC6008571

    Article  PubMed  PubMed Central  Google Scholar 

  157. V.R. Minciacchi, A. Zijlstra, M.A. Rubin, D. Di Vizio, Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed? Prostate Cancer Prostatic Dis. 20(3), 251–258 (2017). https://doi.org/10.1038/pcan.2017.7. PubMed PMID: 28374743; PubMed Central PMCID: PMC5569339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. K. Fujita, H. Kume, K. Matsuzaki, A. Kawashima, T. Ujike, A. Nagahara, M. Uemura, Y. Miyagawa, T. Tomonaga, N. Nonomura, Proteomic analysis of urinary extracellular vesicles from high Gleason score prostate cancer. Sci. Rep. 7, 42961 (2017). https://doi.org/10.1038/srep42961. PubMed PMID: 28211531; PubMed Central PMCID: PMC5314323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. M. Rodriguez, C. Bajo-Santos, N.P. Hessvik, S. Lorenz, B. Fromm, V. Berge, K. Sandvig, A. Line, A. Llorente, Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer 16(1), 156 (2017). https://doi.org/10.1186/s12943-017-0726-4. PubMed PMID: 28982366; PubMed Central PMCID: PMC5629793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. O.E. Bryzgunova, M.M. Zaripov, T.E. Skvortsova, E.A. Lekchnov, A.E. Grigor’eva, I.A. Zaporozhchenko, E.S. Morozkin, E.I. Ryabchikova, Y.B. Yurchenko, V.E. Voitsitskiy, P.P. Laktionov, Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS One 11(6), e0157566 (2016). https://doi.org/10.1371/journal.pone.0157566. PubMed PMID: 27305142; PubMed Central PMCID: PMC4909321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. H. Shin, Y.H. Park, Y.G. Kim, J.Y. Lee, J. Park, Aqueous two-phase system to isolate extracellular vesicles from urine for prostate cancer diagnosis. PLoS One 13(3), e0194818 (2018). https://doi.org/10.1371/journal.pone.0194818. PubMed PMID: 29584777; PubMed Central PMCID: PMC5870972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. A. Morales-Kastresana, B. Telford, T.A. Musich, K. McKinnon, C. Clayborne, Z. Braig, A. Rosner, T. Demberg, D.C. Watson, T.S. Karpova, G.J. Freeman, R.H. DeKruyff, G.N. Pavlakis, M. Terabe, M. Robert-Guroff, J.A. Berzofsky, J.C. Jones, Labeling extracellular vesicles for nanoscale flow cytometry. Sci. Rep. 7(1), 1878 (2017). https://doi.org/10.1038/s41598-017-01731-2. PubMed PMID: 28500324; PubMed Central PMCID: PMC5431945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. A. Morales-Kastresana, J.C. Jones, Flow cytometric analysis of extracellular vesicles. Methods Mol. Biol. 1545, 215–225 (2017). https://doi.org/10.1007/978-1-4939-6728-5_16. PubMed PMID: 27943218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. S.R. Krishn, A. Singh, N. Bowler, A.N. Duffy, A. Friedman, C. Fedele, S. Kurtoglu, S.K. Tripathi, K. Wang, A. Hawkins, A. Sayeed, C.P. Goswami, M.L. Thakur, R.V. Iozzo, S.C. Peiper, W.K. Kelly, L.R. Languino, Prostate cancer sheds the alphavbeta3 integrin in vivo through exosomes. Matrix Biol. 77, 41 (2019). https://doi.org/10.1016/j.matbio.2018.08.004. PubMed PMID: 30098419

    Article  CAS  PubMed  Google Scholar 

  165. H. Lu, N. Bowler, L.A. Harshyne, D. Craig Hooper, S.R. Krishn, S. Kurtoglu, C. Fedele, Q. Liu, H.Y. Tang, A.V. Kossenkov, W.K. Kelly, K. Wang, R.B. Kean, P.H. Weinreb, L. Yu, A. Dutta, P. Fortina, A. Ertel, M. Stanczak, F. Forsberg, D.I. Gabrilovich, D.W. Speicher, D.C. Altieri, L.R. Languino, Exosomal alphavbeta6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol. 70, 20–35 (2018). https://doi.org/10.1016/j.matbio.2018.03.009. PubMed PMID: 29530483; PubMed Central PMCID: PMC6081240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. I. Lazar, E. Clement, C. Attane, C. Muller, L. Nieto, A new role for extracellular vesicles: how small vesicles can feed tumors’ big appetite. J. Lipid Res. 59(10), 1793–1804 (2018). https://doi.org/10.1194/jlr.R083725. PubMed PMID: 29678957; PubMed Central PMCID: PMC6168303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. F. Thuma, M. Zoller, Outsmart tumor exosomes to steal the cancer initiating cell its niche. Semin. Cancer Biol. 28, 39–50 (2014). https://doi.org/10.1016/j.semcancer.2014.02.011. PubMed PMID: 24631836

    Article  CAS  PubMed  Google Scholar 

  168. J. Kim, S. Morley, M. Le, D. Bedoret, D.T. Umetsu, D. Di Vizio, M.R. Freeman, Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells: potential effects on the tumor microenvironment. Cancer Biol. Ther. 15(4), 409–418 (2014). https://doi.org/10.4161/cbt.27627. PubMed PMID: 24423651; PubMed Central PMCID: PMC3979818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. M.N. Theodoraki, T.K. Hoffmann, E.K. Jackson, T.L. Whiteside, Exosomes in HNSCC plasma as surrogate markers of tumour progression and immune competence. Clin. Exp. Immunol. 194(1), 67–78 (2018). https://doi.org/10.1111/cei.13157. PubMed PMID: 30229863; PubMed Central PMCID: PMC6156813

    Article  CAS  PubMed  Google Scholar 

  170. J. Read, A. Ingram, H.A. Al Saleh, K. Platko, K. Gabriel, A. Kapoor, J. Pinthus, F. Majeed, T. Qureshi, K. Al-Nedawi, Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles. Eur. J. Cancer 70, 62–74 (2017). https://doi.org/10.1016/j.ejca.2016.10.017. PubMed PMID: 27886573

    Article  CAS  PubMed  Google Scholar 

  171. W. Stoorvogel, M.J. Kleijmeer, H.J. Geuze, G. Raposo, The biogenesis and functions of exosomes. Traffic 3(5), 321–330 (2002). PubMed PMID: 11967126

    Article  CAS  PubMed  Google Scholar 

  172. P. Samuel, L.A. Mulcahy, F. Furlong, H.O. McCarthy, S.A. Brooks, M. Fabbri, R.C. Pink, D.R.F. Carter, Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373(1737), 20170065 (2018). https://doi.org/10.1098/rstb.2017.0065. PubMed PMID: 29158318; PubMed Central PMCID: PMC5717443

    Article  CAS  PubMed  Google Scholar 

  173. R. Yahyapour, E. Motevaseli, A. Rezaeyan, H. Abdollahi, B. Farhood, M. Cheki, M. Najafi, V. Villa, Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy. Curr. Radiopharm. 11(1), 34–45 (2018). https://doi.org/10.2174/1874471011666171229123130. PubMed PMID: 29284398

    Article  CAS  PubMed  Google Scholar 

  174. J.A. Majda, E.W. Gerner, B. Vanlandingham, K.R. Gehlsen, A.E. Cress, Heat shock-induced shedding of cell surface integrins in A549 human lung tumor cells in culture. Exp. Cell Res. 210(1), 46–51 (1994). https://doi.org/10.1006/excr.1994.1007. PubMed PMID: 7505747

    Article  CAS  PubMed  Google Scholar 

  175. H. Costa Verdera, J.J. Gitz-Francois, R.M. Schiffelers, P. Vader, Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control. Release 266, 100–108 (2017). https://doi.org/10.1016/j.jconrel.2017.09.019. PubMed PMID: 28919558

    Article  CAS  PubMed  Google Scholar 

  176. L.A. Mulcahy, R.C. Pink, D.R. Carter, Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014). https://doi.org/10.3402/jev.v3.24641. PubMed PMID: 25143819; PubMed Central PMCID: PMC4122821

    Article  CAS  Google Scholar 

  177. A.B. Banizs, T. Huang, R.K. Nakamoto, W. Shi, J. He, Endocytosis pathways of endothelial cell derived exosomes. Mol. Pharm. 15, 5585 (2018). https://doi.org/10.1021/acs.molpharmaceut.8b00765. PubMed PMID: 30351959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. D.M. Stranford, J.N. Leonard, Delivery of biomolecules via extracellular vesicles: a budding therapeutic strategy. Adv. Genet. 98, 155–175 (2017). https://doi.org/10.1016/bs.adgen.2017.08.002. PubMed PMID: 28942793

    Article  CAS  PubMed  Google Scholar 

  179. H. Saari, E. Lazaro-Ibanez, T. Viitala, E. Vuorimaa-Laukkanen, P. Siljander, M. Yliperttula, Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J. Control. Release 220(Pt B), 727–737 (2015). https://doi.org/10.1016/j.jconrel.2015.09.031. PubMed PMID: 26390807

    Article  CAS  PubMed  Google Scholar 

  180. G.K. Panigrahi, P.P. Praharaj, T.C. Peak, J. Long, R. Singh, J.S. Rhim, Z.Y. Abd Elmageed, G. Deep, Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci. Rep. 8(1), 3853 (2018). https://doi.org/10.1038/s41598-018-22068-4. PubMed PMID: 29497081; PubMed Central PMCID: PMC5832762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. D.M. Carnell, R.E. Smith, F.M. Daley, M.I. Saunders, S.M. Bentzen, P.J. Hoskin, An immunohistochemical assessment of hypoxia in prostate carcinoma using pimonidazole: implications for radioresistance. Int. J. Radiat. Oncol. Biol. Phys. 65(1), 91–99 (2006). https://doi.org/10.1016/j.ijrobp.2005.11.044. PubMed PMID: 16563659

    Article  CAS  PubMed  Google Scholar 

  182. E.D. Schwab, K.J. Pienta, Cancer as a complex adaptive system. Med. Hypotheses 47(3), 235–241 (1996). PubMed PMID: 8898325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne E. Cress .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harryman, W.L., Warfel, N.A., Nagle, R.B., Cress, A.E. (2019). The Tumor Microenvironments of Lethal Prostate Cancer. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_8

Download citation

Publish with us

Policies and ethics