Skip to main content

Cells of Origin for Prostate Cancer

  • Chapter
  • First Online:
Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1210))

Abstract

Comprehensive knowledge of the normal prostate epithelial lineage hierarchy is a prerequisite to investigate the identity of the cells of origin for prostate cancer. The basal and luminal cells constitute most of the prostate epithelium and have been the major focuses of the study on the cells of origin for prostate cancer. Much progress has been made during the past few decades, mainly using mouse models, to understand the inter-lineage relationship and intra-lineage heterogeneity in adults as well as the lineage plasticity during conditions of stress. These studies have concluded that the adult mouse prostate basal and luminal cells are largely independently sustained under physiological conditions, but both types of cells possess the capacity for bipotent differentiation under stress or artificial experimental conditions. However, the existence or the identity of the putative progenitors within each lineage warrants further investigation. Whether the human prostate lineage hierarchy is completely the same as that of the mouse remains uncertain. Experiments from independent groups have demonstrated that both types of cells in mice and humans can serve as targets for transformation. But controversies remain whether the disease from distinct cells of origin display different clinical behaviors. Further investigation of the intra-lineage heterogeneity will provide new insights into this issue. Understanding the identity of the cells of origin for prostate cancer will help identify novel prognostic markers for early detection of aggressive prostate cancers, provide insights into the therapeutic vulnerability of these tumors, and inspire novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.E. Visvader, Cells of origin in cancer. Nature 469(7330), 314–322 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. C. Blanpain, Tracing the cellular origin of cancer. Nat. Cell Biol. 15(2), 126–134 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. C. Liu, J.C. Sage, M.R. Miller, R.G. Verhaak, S. Hippenmeyer, H. Vogel, et al., Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146(2), 209–221 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S.H. Lee, M.M. Shen, Cell types of origin for prostate cancer. Curr. Opin. Cell Biol. 37, 35–41 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. L. Xin, Cells of origin for cancer: an updated view from prostate cancer. Oncogene 32(32), 3655–3663 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. A.S. Goldstein, O.N. Witte, Does the microenvironment influence the cell types of origin for prostate cancer? Genes Dev. 27(14), 1539–1544 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Zhang, S. Zhao, X. Li, J.S. Kirk, D.G. Tang, Prostate luminal progenitor cells in development and cancer. Trends Cancer. 4(11), 769–783 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C.H. Jamieson, L.E. Ailles, S.J. Dylla, M. Muijtjens, C. Jones, J.L. Zehnder, et al., Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351(7), 657–667 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. B.J. Huntly, H. Shigematsu, K. Deguchi, B.H. Lee, S. Mizuno, N. Duclos, et al., MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6(6), 587–596 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. J.L. Kopp, G. von Figura, E. Mayes, F.F. Liu, C.L. Dubois, M. JPt, et al., Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 22(6), 737–750 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D. Yang, S.K. Denny, P.G. Greenside, A.C. Chaikovsky, J.J. Brady, Y. Ouadah, et al., Intertumoral heterogeneity in SCLC is influenced by the cell type of origin. Cancer Discov. 8(10), 1316–1331 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T.A. Ince, A.L. Richardson, G.W. Bell, M. Saitoh, S. Godar, A.E. Karnoub, et al., Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 12(2), 160–170 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. M. El-Alfy, G. Pelletier, L.S. Hermo, F. Labrie, Unique features of the basal cells of human prostate epithelium. Microsc. Res. Tech. 51(5), 436–446 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. P.A. di Sant’Agnese, Neuroendocrine cells of the prostate and neuroendocrine differentiation in prostatic carcinoma: a review of morphologic aspects. Urology 51(5A Suppl), 121–124 (1998)

    Article  PubMed  Google Scholar 

  15. M.A. Noordzij, G.J. van Steenbrugge, T.H. van der Kwast, F.H. Schroder, Neuroendocrine cells in the normal, hyperplastic and neoplastic prostate. Urol. Res. 22(6), 333–341 (1995)

    Article  CAS  PubMed  Google Scholar 

  16. J.E. McNeal, E.A. Redwine, F.S. Freiha, T.A. Stamey, Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am. J. Surg. Pathol. 12(12), 897–906 (1988)

    Article  CAS  PubMed  Google Scholar 

  17. A. Erbersdobler, H. Augustin, T. Schlomm, R.P. Henke, Prostate cancers in the transition zone: Part 1; pathological aspects. BJU Int. 94(9), 1221–1225 (2004)

    Article  PubMed  Google Scholar 

  18. A. Staack, A.A. Donjacour, J. Brody, G.R. Cunha, P. Carroll, Mouse urogenital development: a practical approach. Differentiation 71(7), 402–413 (2003)

    Article  PubMed  Google Scholar 

  19. J.C. Pignon, C. Grisanzio, Y. Geng, J. Song, R.A. Shivdasani, S. Signoretti, p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc. Natl. Acad. Sci. U. S. A. 110(20), 8105–8110 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A.S. Goldstein, D.A. Lawson, D. Cheng, W. Sun, I.P. Garraway, O.N. Witte, Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl. Acad. Sci. U. S. A. 105(52), 20882–20887 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Aumuller, M. Leonhardt, M. Janssen, L. Konrad, A. Bjartell, P.A. Abrahamsson, Neurogenic origin of human prostate endocrine cells. Urology 53(5), 1041–1048 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. J. Szczyrba, A. Niesen, M. Wagner, P.M. Wandernoth, G. Aumuller, G. Wennemuth, Neuroendocrine cells of the prostate derive from the neural crest. J. Biol. Chem. 292(5), 2021–2031 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Wang, S. Hayward, M. Cao, K. Thayer, G. Cunha, Cell differentiation lineage in the prostate. Differentiation 68(4–5), 270–279 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. S.W. Hayward, L.S. Baskin, P.C. Haughney, A.R. Cunha, B.A. Foster, R. Dahiya, et al., Epithelial development in the rat ventral prostate, anterior prostate and seminal vesicle. Acta Anat. 155(2), 81–93 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. M. Ousset, A. Van Keymeulen, G. Bouvencourt, N. Sharma, Y. Achouri, B.D. Simons, et al., Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat. Cell Biol. 14(11), 1131–1138 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. J. Wang, H.H. Zhu, M. Chu, Y. Liu, C. Zhang, G. Liu, et al., Symmetrical and asymmetrical division analysis provides evidence for a hierarchy of prostate epithelial cell lineages. Nat. Commun. 5, 4758 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. G.R. Cunha, The role of androgens in the epithelio-mesenchymal interactions involved in prostatic morphogenesis in embryonic mice. Anat. Rec. 175(1), 87–96 (1973)

    Article  CAS  PubMed  Google Scholar 

  28. G.R. Cunha, Stromal induction and specification of morphogenesis and cytodifferentiation of the epithelia of the Mullerian ducts and urogenital sinus during development of the uterus and vagina in mice. J. Exp. Zool. 196(3), 361–370 (1976)

    Article  CAS  PubMed  Google Scholar 

  29. B. Zhang, O.J. Kwon, G. Henry, A. Malewska, X. Wei, L. Zhang, et al., Non-cell-autonomous regulation of prostate epithelial homeostasis by androgen receptor. Mol. Cell 63(6), 976–989 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J.T. Isaacs, Control of cell proliferation and death in normal and neoplastic prostate: a stem cell model, in Benigh prostatic hyperplasia, ed. by C. H. Rodgers, D. S. Coffey, G. R. Cunha, (National Institutes of Health, Bethesda, 1985), pp. 85–94

    Google Scholar 

  31. A.R. Uzgare, Y. Xu, J.T. Isaacs, In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. J. Cell. Biochem. 91(1), 196–205 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. A.P. Verhagen, F.C. Ramaekers, T.W. Aalders, H.E. Schaafsma, F.M. Debruyne, J.A. Schalken, Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res. 52(22), 6182–6187 (1992)

    CAS  PubMed  Google Scholar 

  33. Y. Xue, F. Smedts, F.M. Debruyne, J.J. de la Rosette, J.A. Schalken, Identification of intermediate cell types by keratin expression in the developing human prostate. Prostate 34(4), 292–301 (1998)

    Article  CAS  PubMed  Google Scholar 

  34. A.P. Verhagen, T.W. Aalders, F.C. Ramaekers, F.M. Debruyne, J.A. Schalken, Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. Prostate 13(1), 25–38 (1988)

    Article  CAS  PubMed  Google Scholar 

  35. E.J. Tokar, B.B. Ancrile, G.R. Cunha, M.M. Webber, Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation 73(9–10), 463–473 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. J.K. Rane, A.P. Droop, D. Pellacani, E.S. Polson, M.S. Simms, A.T. Collins, et al., Conserved two-step regulatory mechanism of human epithelial differentiation. Stem Cell Rep. 2(2), 180–188 (2014)

    Article  CAS  Google Scholar 

  37. G. van Leenders, H. Dijkman, C. Hulsbergen-van de Kaa, D. Ruiter, J. Schalken, Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab. Invest. 80(8), 1251–1258 (2000)

    Article  PubMed  Google Scholar 

  38. E.J. Robinson, D.E. Neal, A.T. Collins, Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37(3), 149–160 (1998)

    Article  CAS  PubMed  Google Scholar 

  39. D.L. Hudson, M. O’Hare, F.M. Watt, J.R. Masters, Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab. Invest. 80(8), 1243–1250 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. A.T. Collins, F.K. Habib, N.J. Maitland, D.E. Neal, Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J. Cell Sci. 114(Pt 21), 3865–3872 (2001)

    CAS  PubMed  Google Scholar 

  41. L.E. Lamb, B.S. Knudsen, C.K. Miranti, E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J. Cell Sci. 123(Pt 2), 266–276 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. X. Shi, J. Gipp, W. Bushman, Anchorage-independent culture maintains prostate stem cells. Dev. Biol. 312(1), 396–406 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L. Xin, R.U. Lukacs, D.A. Lawson, D. Cheng, O.N. Witte, Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25(11), 2760–2769 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. L.W. Chung, G.R. Cunha, Stromal-epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 4(5), 503–511 (1983)

    Article  CAS  PubMed  Google Scholar 

  45. L. Xin, H. Ide, Y. Kim, P. Dubey, O.N. Witte, In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc. Natl. Acad. Sci. U. S. A. 100(Suppl 1), 11896–11903 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. A.S. Goldstein, J.M. Drake, D.L. Burnes, D.S. Finley, H. Zhang, R.E. Reiter, et al., Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nat. Protoc. 6(5), 656–667 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D.A. Lawson, L. Xin, R.U. Lukacs, D. Cheng, O.N. Witte, Isolation and functional characterization of murine prostate stem cells. Proc. Natl. Acad. Sci. U. S. A. 104(1), 181–186 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. L. Xin, D.A. Lawson, O.N. Witte, The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 102(19), 6942–6947 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Z.A. Wang, A. Mitrofanova, S.K. Bergren, C. Abate-Shen, R.D. Cardiff, A. Califano, et al., Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15(3), 274–283 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. P.E. Burger, X. Xiong, S. Coetzee, S.N. Salm, D. Moscatelli, K. Goto, et al., Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc. Natl. Acad. Sci. U. S. A. 102(20), 7180–7185 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. K.G. Leong, B.E. Wang, L. Johnson, W.Q. Gao, Generation of a prostate from a single adult stem cell. Nature 456(7223), 804–808 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. G.D. Richardson, C.N. Robson, S.H. Lang, D.E. Neal, N.J. Maitland, A.T. Collins, CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 117(Pt 16), 3539–3545 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. N. Choi, B. Zhang, L. Zhang, M. Ittmann, L. Xin, Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21(2), 253–265 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. T.L. Lu, Y.F. Huang, L.R. You, N.C. Chao, F.Y. Su, J.L. Chang, et al., Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. Am. J. Pathol. 182(3), 975–991 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. D.K. Lee, Y. Liu, L. Liao, F. Wang, J. Xu, The prostate basal cell (BC) heterogeneity and the p63-positive BC differentiation spectrum in mice. Int. J. Biol. Sci. 10(9), 1007–1017 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. T. Kurita, R.T. Medina, A.A. Mills, G.R. Cunha, Role of p63 and basal cells in the prostate. Development 131(20), 4955–4964 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. S. Signoretti, M.M. Pires, M. Lindauer, J.W. Horner, C. Grisanzio, S. Dhar, et al., p63 regulates commitment to the prostate cell lineage. Proc. Natl. Acad. Sci. U. S. A. 102(32), 11355–11360 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Signoretti, D. Waltregny, J. Dilks, B. Isaac, D. Lin, L. Garraway, et al., p63 is a prostate basal cell marker and is required for prostate development. Am. J. Pathol. 157(6), 1769–1775 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. J.K. Blackwood, S.C. Williamson, L.C. Greaves, L. Wilson, A.C. Rigas, R. Sandher, et al., In situ lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. J. Pathol. 225(2), 181–188 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. M. Moad, E. Hannezo, S.J. Buczacki, L. Wilson, A. El-Sherif, D. Sims, et al., Multipotent basal stem cells, maintained in localized proximal niches, support directed long-ranging epithelial flows in human prostates. Cell Rep. 20(7), 1609–1622 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32(4), 381–386 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O.J. Kwon, J.M. Valdez, L. Zhang, B. Zhang, X. Wei, Q. Su, et al., Increased Notch signalling inhibits anoikis and stimulates proliferation of prostate luminal epithelial cells. Nat. Commun. 5, 4416 (2014)

    Article  CAS  PubMed  Google Scholar 

  63. S.N. Salm, P.E. Burger, S. Coetzee, K. Goto, D. Moscatelli, E.L. Wilson, TGF-{beta} maintains dormancy of prostatic stem cells in the proximal region of ducts. J. Cell Biol. 170(1), 81–90 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. X. Wang, M. Kruithof-de Julio, K.D. Economides, D. Walker, H. Yu, M.V. Halili, et al., A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461(7263), 495–500 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Germann, A. Wetterwald, N. Guzman-Ramirez, G. van der Pluijm, Z. Culig, M.G. Cecchini, et al., Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. Stem Cells 30(6), 1076–1086 (2012)

    Article  CAS  PubMed  Google Scholar 

  66. Y.A. Yoo, M. Roh, A.F. Naseem, B. Lysy, M.M. Desouki, K. Unno, et al., Bmi1 marks distinct castration-resistant luminal progenitor cells competent for prostate regeneration and tumour initiation. Nat. Commun. 7, 12943 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O.J. Kwon, L. Zhang, L. Xin, Stem cell antigen-1 identifies a distinct androgen-independent murine prostatic luminal cell lineage with bipotent potential. Stem Cells 34(1), 191–202 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. W.R. Karthaus, P.J. Iaquinta, J. Drost, A. Gracanin, R. van Boxtel, J. Wongvipat, et al., Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159(1), 163–175 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. C.W. Chua, M. Shibata, M. Lei, R. Toivanen, L.J. Barlow, S.K. Bergren, et al., Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 16(10), 951–961 (2014)., 1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. D. Zhang, K. Lin, Y. Lu, K. Rycaj, Y. Zhong, H.P. Chao, et al., Developing a novel two-dimensional culture system to enrich human prostate luminal progenitors that can function as a cell of origin for prostate cancer. Stem Cells Transl. Med. 6(3), 748–760 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. X. Liu, T.R. Grogan, H. Hieronymus, T. Hashimoto, J. Mottahedeh, D. Cheng, et al., Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep. 17(10), 2596–2606 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. A. Dutta, C. Le Magnen, A. Mitrofanova, X. Ouyang, A. Califano, C. Abate-Shen, Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science 352(6293), 1576–1580 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. J. Liu, L.E. Pascal, S. Isharwal, D. Metzger, R. Ramos Garcia, J. Pilch, et al., Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol. Endocrinol. 25(11), 1849–1857 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. G.S. Evans, J.A. Chandler, Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 11(4), 339–351 (1987)

    Article  CAS  PubMed  Google Scholar 

  75. G.S. Evans, J.A. Chandler, Cell proliferation studies in rat prostate. I. The proliferative role of basal and secretory epithelial cells during normal growth. Prostate 10(2), 163–178 (1987)

    Article  CAS  PubMed  Google Scholar 

  76. C. Guo, H. Liu, B.H. Zhang, R.M. Cadaneanu, A.M. Mayle, I.P. Garraway, Epcam, CD44, and CD49f distinguish sphere-forming human prostate basal cells from a subpopulation with predominant tubule initiation capability. PLoS One 7(4), e34219 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. D.J. Vander Griend, W.L. Karthaus, S. Dalrymple, A. Meeker, A.M. DeMarzo, J.T. Isaacs, The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res. 68(23), 9703–9711 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. W.Y. Hu, D.P. Hu, L. Xie, Y. Li, S. Majumdar, L. Nonn, et al., Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution. Stem Cell Res. 23, 1–12 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. B.E. Wang, X. Wang, J.E. Long, J. Eastham-Anderson, R. Firestein, M.R. Junttila, Castration-resistant Lgr5(+) cells are long-lived stem cells required for prostatic regeneration. Stem Cell Rep. 4(5), 768–779 (2015)

    Article  CAS  Google Scholar 

  80. X. Wei, A.V. Orjalo, L. Xin, CD133 does not enrich for the stem cell activity in vivo in adult mouse prostates. Stem Cell Res. 16(3), 597–606 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. L. Zhang, J.M. Valdez, B. Zhang, L. Wei, J. Chang, L. Xin, ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS One 6(3), e18271 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. C. Zhang, H.J. Lee, A. Shrivastava, R. Wang, T.J. McQuiston, S.S. Challberg, et al., Long-term in vitro expansion of epithelial stem cells enabled by pharmacological inhibition of PAK1-ROCK-Myosin II and TGF-beta signaling. Cell Rep. 25(3), 598–610.e5 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. J.C. Pignon, C. Grisanzio, I. Carvo, L. Werner, M. Regan, E.L. Wilson, et al., Cell kinetic studies fail to identify sequentially proliferating progenitors as the major source of epithelial renewal in the adult murine prostate. PLoS One 10(5), e0128489 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. A. Tsujimura, Y. Koikawa, S. Salm, T. Takao, S. Coetzee, D. Moscatelli, et al., Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J. Cell Biol. 157(7), 1257–1265 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. D. Zhang, C. Jeter, S. Gong, A. Tracz, Y. Lu, J. Shen, et al., Histone 2B-GFP label-retaining prostate luminal cells possess progenitor cell properties and are intrinsically resistant to castration. Stem Cell Rep 10(1), 228–242 (2018)

    Article  CAS  Google Scholar 

  86. J.D. Barros-Silva, D.E. Linn, I. Steiner, G. Guo, A. Ali, H. Pakula, et al., Single-cell analysis identifies LY6D as a marker linking castration-resistant prostate luminal cells to prostate progenitors and cancer. Cell Rep. 25(12), 3504–18.e6 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. S. Agarwal, P.G. Hynes, H.S. Tillman, R. Lake, W.G. Abou-Kheir, L. Fang, et al., Identification of different classes of luminal progenitor cells within prostate tumors. Cell Rep. 13(10), 2147–2158 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. D.E. Abbott, C. Pritchard, N.J. Clegg, C. Ferguson, R. Dumpit, R.A. Sikes, et al., Expressed sequence tag profiling identifies developmental and anatomic partitioning of gene expression in the mouse prostate. Genome Biol. 4(12), R79 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  89. I.M. Berquin, Y. Min, R. Wu, H. Wu, Y.Q. Chen, Expression signature of the mouse prostate. J. Biol. Chem. 280(43), 36442–36451 (2005)

    Article  CAS  PubMed  Google Scholar 

  90. R.J. Cohen, G. Glezerson, L.F. Taylor, H.A. Grundle, J.H. Naude, The neuroendocrine cell population of the human prostate gland. J. Urol. 150(2 Pt 1), 365–368 (1993)

    Article  CAS  PubMed  Google Scholar 

  91. X. Wei, L. Zhang, Z. Zhou, O.J. Kwon, Y. Zhang, H. Nguyen, et al., Spatially restricted stromal Wnt signaling restrains prostate epithelial progenitor growth through direct and indirect mechanisms. Cell Stem Cell 24(5), 753–68.e6 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. G.H. Henry, A. Malewska, D.B. Joseph, V.S. Malladi, J. Lee, J. Torrealba, et al., A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Rep. 25(12), 3530–42.e5 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)

    Article  CAS  PubMed  Google Scholar 

  94. O.J. Kwon, L. Zhang, M.M. Ittmann, L. Xin, Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc. Natl. Acad. Sci. U. S. A. 111(5), E592–E600 (2014)

    Article  CAS  PubMed  Google Scholar 

  95. R. Toivanen, A. Mohan, M.M. Shen, Basal progenitors contribute to repair of the prostate epithelium following induced luminal anoikis. Stem Cell Rep. 6(5), 660–667 (2016)

    Article  CAS  Google Scholar 

  96. A.M. De Marzo, Y. Nakai, W.G. Nelson, Inflammation, atrophy, and prostate carcinogenesis. Urol. Oncol. 25(5), 398–400 (2007)

    Article  PubMed  CAS  Google Scholar 

  97. A.M. De Marzo, E.A. Platz, S. Sutcliffe, J. Xu, H. Gronberg, C.G. Drake, et al., Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7(4), 256–269 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. C.M. Perou, T. Sorlie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, C.A. Rees, et al., Molecular portraits of human breast tumours. Nature 406(6797), 747–752 (2000)

    Article  CAS  PubMed  Google Scholar 

  99. B.S. Taylor, N. Schultz, H. Hieronymus, A. Gopalan, Y. Xiao, B.S. Carver, et al., Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1), 11–22 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. G.V. Glinsky, A.B. Glinskii, A.J. Stephenson, R.M. Hoffman, W.L. Gerald, Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest. 113(6), 913–923 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. A.S. Goldstein, Y. Zong, O.N. Witte, A two-step toward personalized therapies for prostate cancer. Sci. Transl. Med. 3(72), 72ps7 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  102. T.Z. Ali, J.I. Epstein, False positive labeling of prostate cancer with high molecular weight cytokeratin: p63 a more specific immunomarker for basal cells. Am. J. Surg. Pathol. 32(12), 1890–1895 (2008)

    Article  PubMed  Google Scholar 

  103. X.J. Yang, K. Lecksell, P. Gaudin, J.I. Epstein, Rare expression of high-molecular-weight cytokeratin in adenocarcinoma of the prostate gland: a study of 100 cases of metastatic and locally advanced prostate cancer. Am. J. Surg. Pathol. 23(2), 147–152 (1999)

    Article  CAS  PubMed  Google Scholar 

  104. P.A. Humphrey, Histological variants of prostatic carcinoma and their significance. Histopathology 60(1), 59–74 (2012)

    Article  PubMed  Google Scholar 

  105. S. Sanati, M.A. Watson, A.L. Salavaggione, P.A. Humphrey, Gene expression profiles of ductal versus acinar adenocarcinoma of the prostate. Mod. Pathol. 22(10), 1273–1279 (2009)

    Article  CAS  PubMed  Google Scholar 

  106. T.Z. Ali, J.I. Epstein, Basal cell carcinoma of the prostate: a clinicopathologic study of 29 cases. Am. J. Surg. Pathol. 31(5), 697–705 (2007)

    Article  PubMed  Google Scholar 

  107. S.Y. Nakada, P.A. di Sant’ Agnese, R.A. Moynes, R.A. Hiipakka, S. Liao, A.T. Cockett, et al., The androgen receptor status of neuroendocrine cells in human benign and malignant prostatic tissue. Cancer Res. 53(9), 1967–1970 (1993)

    CAS  PubMed  Google Scholar 

  108. A.H. Davies, H. Beltran, A. Zoubeidi, Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15(5), 271–286 (2018)

    Article  CAS  PubMed  Google Scholar 

  109. J.L. Yao, R. Madeb, P. Bourne, J. Lei, X. Yang, S. Tickoo, et al., Small cell carcinoma of the prostate: an immunohistochemical study. Am. J. Surg. Pathol. 30(6), 705–712 (2006)

    Article  PubMed  Google Scholar 

  110. M. Zou, R. Toivanen, A. Mitrofanova, N. Floch, S. Hayati, Y. Sun, et al., Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 7(7), 736–749 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. D. Lin, A.W. Wyatt, H. Xue, Y. Wang, X. Dong, A. Haegert, et al., High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74(4), 1272–1283 (2014)

    Article  CAS  PubMed  Google Scholar 

  112. S. Jaamaa, T.M. Af Hallstrom, A. Sankila, V. Rantanen, H. Koistinen, U.H. Stenman, et al., DNA damage recognition via activated ATM and p53 pathway in nonproliferating human prostate tissue. Cancer Res. 70(21), 8630–8641 (2010)

    Article  PubMed  CAS  Google Scholar 

  113. A.C. Hsieh, H.G. Nguyen, L. Wen, M.P. Edlind, P.R. Carroll, W. Kim, et al., Cell type-specific abundance of 4EBP1 primes prostate cancer sensitivity or resistance to PI3K pathway inhibitors. Sci. Signal. 8(403), ra116 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. B. Gurel, T. Iwata, C.M. Koh, R.B. Jenkins, F. Lan, C. Van Dang, et al., Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21(9), 1156–1167 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. A.K. Meeker, J.L. Hicks, E.A. Platz, G.E. March, C.J. Bennett, M.J. Delannoy, et al., Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 62(22), 6405–6409 (2002)

    CAS  PubMed  Google Scholar 

  116. S.A. Tomlins, D.R. Rhodes, S. Perner, S.M. Dhanasekaran, R. Mehra, X.W. Sun, et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748), 644–648 (2005)

    Article  CAS  PubMed  Google Scholar 

  117. E. Lim, F. Vaillant, D. Wu, N.C. Forrest, B. Pal, A.H. Hart, et al., Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15(8), 907–913 (2009)

    Article  CAS  PubMed  Google Scholar 

  118. H. Bonkhoff, U. Stein, K. Remberger, The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 24(3), 114–118 (1994)

    Article  CAS  PubMed  Google Scholar 

  119. J.A. Tuxhorn, G.E. Ayala, D.R. Rowley, Reactive stroma in prostate cancer progression. J. Urol. 166(6), 2472–2483 (2001)

    Article  CAS  PubMed  Google Scholar 

  120. E.S. Polson, J.L. Lewis, H. Celik, V.M. Mann, M.J. Stower, M.S. Simms, et al., Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells. Nat. Commun. 4, 1623 (2013)

    Article  PubMed  CAS  Google Scholar 

  121. Y. Zong, L. Xin, A.S. Goldstein, D.A. Lawson, M.A. Teitell, O.N. Witte, ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc. Natl. Acad. Sci. U. S. A. 106(30), 12465–12470 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. O. Klezovitch, M. Risk, I. Coleman, J.M. Lucas, M. Null, L.D. True, et al., A causal role for ERG in neoplastic transformation of prostate epithelium. Proc. Natl. Acad. Sci. U. S. A. 105(6), 2105–2110 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  123. N.M. Greenberg, F.J. DeMayo, P.C. Sheppard, R. Barrios, R. Lebovitz, M. Finegold, et al., The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol. Endocrinol. 8(2), 230–239 (1994)

    CAS  PubMed  Google Scholar 

  124. J. Zhang, T.Z. Thomas, S. Kasper, R.J. Matusik, A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology 141(12), 4698–4710 (2000)

    Article  CAS  PubMed  Google Scholar 

  125. X. Wu, J. Wu, J. Huang, W.C. Powell, J. Zhang, R.J. Matusik, et al., Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech. Dev. 101(1–2), 61–69 (2001)

    Article  CAS  PubMed  Google Scholar 

  126. N. Masumori, T.Z. Thomas, P. Chaurand, T. Case, M. Paul, S. Kasper, et al., A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res. 61(5), 2239–2249 (2001)

    CAS  PubMed  Google Scholar 

  127. S. Wang, J. Gao, Q. Lei, N. Rozengurt, C. Pritchard, J. Jiao, et al., Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4(3), 209–221 (2003)

    Article  CAS  PubMed  Google Scholar 

  128. V.D. Acevedo, R.D. Gangula, K.W. Freeman, R. Li, Y. Zhang, F. Wang, et al., Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12(6), 559–571 (2007)

    Article  CAS  PubMed  Google Scholar 

  129. P.K. Majumder, J.J. Yeh, D.J. George, P.G. Febbo, J. Kum, Q. Xue, et al., Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc. Natl. Acad. Sci. U. S. A. 100(13), 7841–7846 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. K. Ellwood-Yen, T.G. Graeber, J. Wongvipat, M.L. Iruela-Arispe, J. Zhang, R. Matusik, et al., Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4(3), 223–238 (2003)

    Article  CAS  PubMed  Google Scholar 

  131. X. Wu, K. Xu, L. Zhang, Y. Deng, P. Lee, E. Shapiro, et al., Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Dev. Biol. 356(2), 337–349 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. P.C. Weijerman, H.C. Romijn, D.M. Peehl, Human papilloma virus type 18 DNA immortalized cell lines from the human prostate epithelium. Prog. Clin. Biol. Res. 386, 67–69 (1994)

    CAS  PubMed  Google Scholar 

  133. P.C. Weijerman, J.J. Konig, S.T. Wong, H.G. Niesters, D.M. Peehl, Lipofection-mediated immortalization of human prostatic epithelial cells of normal and malignant origin using human papillomavirus type 18 DNA. Cancer Res. 54(21), 5579–5583 (1994)

    CAS  PubMed  Google Scholar 

  134. R. Berger, P.G. Febbo, P.K. Majumder, J.J. Zhao, S. Mukherjee, S. Signoretti, et al., Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res. 64(24), 8867–8875 (2004)

    Article  CAS  PubMed  Google Scholar 

  135. A.S. Goldstein, J. Huang, C. Guo, I.P. Garraway, O.N. Witte, Identification of a cell of origin for human prostate cancer. Science 329(5991), 568–571 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. D.A. Lawson, Y. Zong, S. Memarzadeh, L. Xin, J. Huang, O.N. Witte, Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl. Acad. Sci. U. S. A. 107(6), 2610–2615 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. L. Xin, M.A. Teitell, D.A. Lawson, A. Kwon, I.K. Mellinghoff, O.N. Witte, Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc. Natl. Acad. Sci. U. S. A. 103(20), 7789–7794 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. T. Stoyanova, M. Riedinger, S. Lin, C.M. Faltermeier, B.A. Smith, K.X. Zhang, et al., Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 113(42), E6457–E6E66 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. T. Stoyanova, A.R. Cooper, J.M. Drake, X. Liu, A.J. Armstrong, K.J. Pienta, et al., Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proc. Natl. Acad. Sci. U. S. A. 110(50), 20111–20116 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. J.W. Park, J.K. Lee, J.W. Phillips, P. Huang, D. Cheng, J. Huang, et al., Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc. Natl. Acad. Sci. U. S. A. 113(16), 4482–4487 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. J.K. Lee, J.W. Phillips, B.A. Smith, J.W. Park, T. Stoyanova, E.F. McCaffrey, et al., N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29(4), 536–547 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. J.W. Park, J.K. Lee, K.M. Sheu, L. Wang, N.G. Balanis, K. Nguyen, et al., Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 362(6410), 91–95 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. R.A. Taylor, R. Toivanen, M. Frydenberg, J. Pedersen, L. Harewood, Australian Prostate Cancer B, et al., Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cells 30(6), 1087–1096 (2012)

    Article  CAS  PubMed  Google Scholar 

  144. Z.A. Wang, R. Toivanen, S.K. Bergren, P. Chambon, M.M. Shen, Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep. 8(5), 1339–1346 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. B.A. Smith, A. Sokolov, V. Uzunangelov, R. Baertsch, Y. Newton, K. Graim, et al., A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc. Natl. Acad. Sci. U. S. A. 112(47), E6544–E6552 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. D. Zhang, D. Park, Y. Zhong, Y. Lu, K. Rycaj, S. Gong, et al., Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat. Commun. 7, 10798 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Z. Zhou, A. Flesken-Nikitin, A.Y. Nikitin, Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res. 67(12), 5683–5690 (2007)

    Article  CAS  PubMed  Google Scholar 

  148. X. Xiong, M. Schober, E. Tassone, A. Khodadadi-Jamayran, A. Sastre-Perona, H. Zhou, et al., KLF4, a gene regulating prostate stem cell homeostasis, is a barrier to malignant progression and predictor of good prognosis in prostate cancer. Cell Rep. 25(11), 3006–20.e7 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. C.K. Ratnacaram, M. Teletin, M. Jiang, X. Meng, P. Chambon, D. Metzger, Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma. Proc. Natl. Acad. Sci. U. S. A. 105(7), 2521–2526 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xin, L. (2019). Cells of Origin for Prostate Cancer. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_4

Download citation

Publish with us

Policies and ethics