Abstract
Olive oil is a key ingredient in the Mediterranean diet and offers many health benefits. However, many factors affect the quality and quantity of olive oil such as olive tree diseases and olive-related pests. Unfortunately, the procedure of identifying pests or the outbreak of a disease is time-consuming, and it depends heavily on the size of the olive grove. Through the use of ICT, remote monitoring of the olive grove can be achieved, by collecting environment-related data and having an overview of the olive grove’s overall health. In this paper we propose a low-cost dense network of sensors that collects daily data regarding the olive grove, thus, providing the possibility to prevent infestation of olive fruit fly and/or the outbreak of olive tree-related disease.
Keywords
- Low-cost sensors
- Sensors network
- Olive oil
- Olive grove
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Barrenetxea G, Ingelrest F, Schaefer G, Vetterli M, Couach O, Parlange M (2008) SensorScope: out-of-the-box environmental monitoring. In: Proceeding of ACM/IEEE IPSN, St. Louis, MO, USA, p 332–343
Broufas GD, Pappas ML, Koveos DS (2009) Effect of relative humidity on longevity, ovarian maturation, and egg production in the olive fruit Fly (Diptera: Tephritidae). Ann Entomol Soc Am 102(1):70–75. https://doi.org/10.1603/008.102.0107
Deshmukh AD, Shinde UB (2016) A low cost environment monitoring system using raspberry Pi and arduino with Zigbee. In: Inventive Computation Technologies (ICICT), international conference, Coimbatore, India on. vol 3, IEEE
Eurostat. Agri-Environmental Indicator—Cropping Patterns (2017) Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_cropping_patterns. Accessed 25 Sept 2018
Fletcher BS (1989) Temperature–development rate relationships of the immature stages and adults of tephritid fruit flies, World Crop Pests: fruit flies—their biology, natural enemies and control, ed. AS Robinson, G Hooper, Amsterdam, Elsevier 3A:273–289
Fogher C, Busconi M, Sebastiani L, Bracci T (2010) Chapter 2—Olive genomics. In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Academic Press, Cambridge, pp 17–24
Gaddam A (2014) Designing a wireless sensors network for monitoring and predicting droughts. ICST 20140: 8th International Conference on Sensing Technology, Liverpool, UK, 2-4 September 2014
Genc H, Nation JL (2008) Survival and development of Bactrocera oleae Gmelin (Diptera: Tephritidae) immature stages at four temperatures in the laboratory. Afr J Biotechnol 7:2495–2500
Mesas-Carrascosa FJ, Santano DV, Meroño JE, de la Orden MS, García-Ferrer A (2015) Open source hardware to monitor environmental parameters in precision agriculture. Biosyst Eng 137:73–83
Pappas ML, Broufas GD, Koufali N, Pieri P, Koveos DS (2011) Effect of heat stress on survival and reproduction of the olive fruit fly Bactrocera (Dacus) oleae. J Appl Entomol 135:359–366
Paul M. Vossen: peacock spot and cercospora foliar disease on olive. http://cesonoma.ucanr.edu/files/27173.pdf
Sedef NE, Sibel K (2014) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67(11):632–638. https://doi.org/10.1111/j.1753-4887.2009.00248.x
Tsitsipis JA (1977) Effect of constant temperatures on eggs of olive fruit fly, Dacus oleae (Diptera: Tephritidae). Ann Zool Ecol Anim 9:133–139
Tsitsipis JA (1980) Effect of constant temperatures on larval and pupal development of olive fruit flies reared on artificial diet. Environ Entomol 9:764–768
Yokoyama VY, Rendon RA, Sivinski J (2006) Biological control of olive fruit fly (Diptera: Tephritidae) by Reseases of Psyttalia cf. concolor (Hymenoptera: Braconidae) in California, Parasitoid longevity in presence of the host, and host status of walnut husk fly. In: Proceedings of the 7th international symposium on fruit flies of economic importance, Salvador, p 157–164
Acknowledgments
The financial support of the European Union and Greece (Partnership Agreement for the Development Framework 2014–2020) under the Regional Operational Programme Ionian Islands 2014–2020 for the project “Olive Observer” is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Vlachos, I., Kalamatianos, R., Karydis, I., Spiridonidou, A., Avlonitis, M. (2020). Utilization of New Technologies in the Production of Pharmaceutical Olive Oil. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-32622-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-32622-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32621-0
Online ISBN: 978-3-030-32622-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)