Skip to main content
Book cover

GeNeDis 2018 pp 115–125Cite as

Artificial Neural Networks in Computer-Aided Drug Design: An Overview of Recent Advances

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1194)

Abstract

Computer-aided drug design (CADD) is the framework in which the huge amount of data accumulated by high-throughput experimental methods used in drug design is quantitatively studied. Its objectives include pattern recognition, biomarker identification and/or classification, etc. In order to achieve these objectives, machine learning algorithms and especially artificial neural networks (ANNs) have been used over ADMET factor testing and QSAR modeling evaluation. This paper provides an overview of the current trends in CADD-applied ANNs, since their use was re-boosted over a decade ago.

Keywords

  • Artificial neural networks (ANNs)
  • Computer-aided drug design (CADD)
  • Quantitative structure-activity relationship (QSAR) models
  • Molecular predictors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-32622-7_10
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-32622-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bajorath J (2017) Representation and identification of activity cliffs. Expert Opin Drug Discovery 12(9):879–883

    CrossRef  Google Scholar 

  • Bender A et al (2009) How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 49:108–119

    CrossRef  CAS  Google Scholar 

  • Bengio Y et al (2013) Representation learning. A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35:1798

    CrossRef  Google Scholar 

  • Bleakley K et al (2009) Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18):2397–2403

    CrossRef  CAS  Google Scholar 

  • Chartier M et al (2016) IsoMIF finder: online detection of binding site molecular interaction field similarities. Bioinformatics 32(4):621–630

    CrossRef  CAS  Google Scholar 

  • Chaudhari R et al (2017) Computational polypharmacology: a new paradigm for drug discovery. Expert Opin Drug Discovery 12(3):279–291

    CrossRef  CAS  Google Scholar 

  • Chen YZ et al (2001) Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43(2):217–226

    CrossRef  CAS  Google Scholar 

  • Cheng F et al (2013) In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem 13(11):1273–1289

    CrossRef  CAS  Google Scholar 

  • Dahl GE et al (2014) Multi task neural networks for QSAR predictions. https://arxiv.org/abs/1406.1231

  • Ding H et al (2014) Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 15(5):734–747

    CrossRef  Google Scholar 

  • Gawehn E et al (2016) Deep learning in drug discovery. Mol Infor 35(1):3–14

    CrossRef  CAS  Google Scholar 

  • Gonen M (2012) Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18):2304–2310

    CrossRef  Google Scholar 

  • Hinton GE et al (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    CrossRef  CAS  Google Scholar 

  • Jacob L, Vert JP (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19):2149–2156

    CrossRef  CAS  Google Scholar 

  • Kokh DB et al (2013) TRAPP: a tool for analysis of transient binding pockets in proteins. J Chem Inf Model 53(5):1235–1252

    CrossRef  CAS  Google Scholar 

  • Κoutsoukas A et al (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteome 74:2554–2574β

    CrossRef  Google Scholar 

  • Krizhevsky A et al (2012) ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp 1097–1105

    Google Scholar 

  • Lang PT et al (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15(6):1219–1230

    CrossRef  CAS  Google Scholar 

  • Li H et al (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34(Web Server):W219–W224

    CrossRef  CAS  Google Scholar 

  • Li Y et al (2016) AutoT&T v.2: an efficient and versatile tool for lead structure generation and optimization. J Chem Inf Model 56(2):435–453

    CrossRef  CAS  Google Scholar 

  • Patel JL, Goyal RK (2007) Applications of artificial neural networks in medical science. Curr Clin Pharmacol 2:217–226

    CrossRef  Google Scholar 

  • Ramsundar B et al (2015) Massively multitask networks for drug discovery. https://arxiv.org/abs/1502.02072

  • Sawada R et al (2014) Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Inf 33(11–12):719–731

    Google Scholar 

  • Sejnowski D (1985) A learning algorithm for Boltzmann machines. Cogn Sci 9(1):147–169

    CrossRef  Google Scholar 

  • Siragusa L et al (2015) BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity. Proteins 83(3):517–532

    CrossRef  CAS  Google Scholar 

  • Smolensky P (1986) Information processing in dynamical systems: foundations of harmony theory. In: Parallel distributed processing: exploration in microstructure of cognition. MIT Press, Cambridge, MA, USA, pp 194–281

    Google Scholar 

  • Tian K et al (2016) Boosting compound-protein interaction prediction by deep learning. Methods 110:64–72

    CrossRef  CAS  Google Scholar 

  • Unterthiner T et al (2014) Deep learning as an opportunity in visual screening. In: Deep learning and representation learning workshop (NIPS 2014)

    Google Scholar 

  • Van Laarhoven T et al (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21):3036–3043

    CrossRef  Google Scholar 

  • Wallach V et al (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. https://arxiv.org/abs/1510.02855

  • Wang Y et al (2013) Predicting drug-target interactions using restricted Bolzmann machines. Bioinformatics 29(13):126–134

    CrossRef  Google Scholar 

  • Xia Z et al (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol 4(Suppl 2):S6

    CrossRef  Google Scholar 

  • Zou X et al (2017) Protein function prediction using deep restricted Boltzmann machines. Biomed Res Int 2017:1729301

    PubMed  PubMed Central  Google Scholar 

Download references

Declaration on Interest

The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter overviewed in this manuscript. Royalties, employment, consultancies, honoraria, stock ownership or options, expert testimony, and grants or patents received or pending included.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Cheirdaris, D.G. (2020). Artificial Neural Networks in Computer-Aided Drug Design: An Overview of Recent Advances. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-32622-7_10

Download citation