Advertisement

Deep Learning for Biometric Face Recognition: Experimental Study on Benchmark Data Sets

  • Natalya Selitskaya
  • S. Sielicki
  • L. Jakaite
  • V. Schetinin
  • F. Evans
  • M. Conrad
  • P. Sant
Chapter
  • 119 Downloads
Part of the Unsupervised and Semi-Supervised Learning book series (UNSESUL)

Abstract

There are still problems in applications of Machine Learning for face recognition. Such factors as lighting conditions, head rotations, emotions, and view angles affect the recognition accuracy. A large number of recognition subjects requires complex class boundaries. Deep Neural Networks have provided efficient solutions, although their implementations require massive computations for evaluation and minimisation of error functions. Gradient algorithms provide iterative minimisation of the error function. A maximal performance is achieved if parameters of gradient algorithms and neural network structures are properly set. The use of pairwise neural network structures often improves the performance because such structures require a small set of optimisation parameters. The experiments have been conducted on some face biometric benchmark data sets, and the main findings are presented in the form of a tutorial.

Keywords

Face biometric Deep neural networks Optimisation Benchmark data 

References

  1. 1.
    H. Bay, T. Tuytelaars, L.V. Gool, Surf: speeded up robust features, in Computer Vision – ECCV 2006, ed. by A. Leonardis, H. Bischof, A. Pinz (Springer, Berlin, 2006), pp. 404–417CrossRefGoogle Scholar
  2. 2.
    H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, Speeded-up robust features (surf). Comp. Vision Image Underst. (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    F. Bowen, J. Hu, E.Y. Du, A multistage approach for image registration. IEEE Trans. Cybern. 46(9), 2119–2131 (2016)CrossRefGoogle Scholar
  4. 4.
    B.C. Chen, Y.Y. Chen, Y.H. Kuo, T.D. Ngo, D.D. Le, S. Satoh, W.H. Hsu, Scalable face track retrieval in video archives using bag-of-faces sparse representation. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1595–1603 (2017)CrossRefGoogle Scholar
  5. 5.
    Z. Chen, Y. Wang, H. Liu, Unobtrusive sensor-based occupancy facing direction detection and tracking using advanced machine learning algorithms. IEEE Sensors J. 18(15), 6360–6368 (2018)CrossRefGoogle Scholar
  6. 6.
    N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1 (June 2005), pp. 886–893Google Scholar
  7. 7.
    W. Deng, J. Hu, J. Lu, J. Guo, Transform-invariant PCA: a unified approach to fully automatic face alignment, representation, and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1275–1284 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Fei-Fei, R. Fergus, P. Perona, Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Frintrop, E. Rome, H.I. Christensen, Computational visual attention systems and their cognitive foundations: a survey. ACM Trans. Appl. Percept. 7(1), 1–39 (2010)CrossRefGoogle Scholar
  10. 10.
    A.C. Geng Du, F. Su, Face recognition using surf features, in Proceedings SPIE, vol. 7496 (2009)Google Scholar
  11. 11.
    A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)CrossRefGoogle Scholar
  12. 12.
    I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)zbMATHGoogle Scholar
  13. 13.
    S. Gunasekar, J. Ghosh, A.C. Bovik, Face detection on distorted images augmented by perceptual quality-aware features. IEEE Trans. Inf. Forensics Secur. 9(12), 2119–2131 (2014)CrossRefGoogle Scholar
  14. 14.
    F.M. Hasanuzzaman, X. Yang, Y. Tian, Robust and effective component-based banknote recognition by surf features, in 2011 20th Annual Wireless and Optical Communications Conference (WOCC) (April 2011), pp. 1–6Google Scholar
  15. 15.
    T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning. Springer Series in Statistics (Springer, New York, 2001)CrossRefGoogle Scholar
  16. 16.
    A.J. Izenman, Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning,1st edn. (Springer, Berlin, 2008)CrossRefGoogle Scholar
  17. 17.
    L. Jakaite, V. Schetinin, C. Maple, J. Schult, Bayesian decision trees for EEG assessment of newborn brain maturity, in 2010 UK Workshop on Computational Intelligence (UKCI) (Sept 2010), pp. 1–6Google Scholar
  18. 18.
    L. Jakaite, V. Schetinin, J. Schult, Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity, in 2011 24th International Symposium on Computer-Based Medical Systems (CBMS) (June 2011), pp. 1–6Google Scholar
  19. 19.
    B. Jun, I. Choi, D. Kim, Local transform features and hybridization for accurate face and human detection. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1423–1436 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Kalsum, S.M. Anwar, M. Majid, B. Khan, S.M. Ali, Emotion recognition from facial expressions using hybrid feature descriptors. IET Image Process. 12(6), 1004–1012 (2018)CrossRefGoogle Scholar
  21. 21.
    V. Kecman, T.-M. Huang, M. Vogt, Iterative single data algorithm for training kernel machines from huge data sets: theory and performance. Support Vector Mach. Theory Appl. 177, 605–605 (2005)Google Scholar
  22. 22.
    Y. LeCun, Y. Bengio, G.E. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Lei, X. Jiang, Z. Shi, D. Chen, Q. Li, Face recognition method based on surf feature, in 2009 International Symposium on Computer Network and Multimedia Technology (Jan 2009), pp. 1–4Google Scholar
  24. 24.
    J. Li, T. Wang, Y. Zhang, Face detection using surf cascade, in 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (Nov 2011), pp. 2183–2190Google Scholar
  25. 25.
    Z. Li, U. Park, A.K. Jain, A discriminative model for age invariant face recognition. IEEE Trans. Inf. Forensics Secur. 6(3), 1028–1037 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 00 (June 2015), pp. 5325–5334Google Scholar
  27. 27.
    L. Liu, C. Xiong, H. Zhang, Z. Niu, M. Wang, S. Yan, Deep aging face verification with large gaps. IEEE Trans. Multimedia 18(1), 64–75 (2016)CrossRefGoogle Scholar
  28. 28.
    D.G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  29. 29.
    M.J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with Gabor wavelets, in FG (1998)Google Scholar
  30. 30.
    W. Mei, D. Weihong, Deep face recognition: a survey. CoRR, abs/1804.06655 (2018)Google Scholar
  31. 31.
    K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)zbMATHGoogle Scholar
  32. 32.
    A. Nefian, M. Khosravi, M. Hayes, Real-time detection of human faces in uncontrolled environments, in Proceedings of SPIE - The International Society for Optical Engineering (May 1999)Google Scholar
  33. 33.
    N. Nyah, L. Jakaite, V. Schetinin, P. Sant, A. Aggoun, Learning polynomial neural networks of a near-optimal connectivity for detecting abnormal patterns in biometric data, in 2016 SAI Computing Conference (SAI) (July 2016), pp. 409–413Google Scholar
  34. 34.
    S. O’Hara, B.A. Draper, Introduction to the bag of features paradigm for image classification and retrieval. arXiv, abs/1101.3354 (2011)Google Scholar
  35. 35.
    M. Oravec, Feature extraction and classification by machine learning methods for biometric recognition of face and iris, in Proceedings ELMAR-2014 (Sept 2014), pp. 1–4Google Scholar
  36. 36.
    E. Oyallon, J. Rabin, An analysis of the SURF method. Image Processing On Line 5, 176–218 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    N. Passalis, A. Tefas, Learning neural bag-of-features for large-scale image retrieval. IEEE Trans. Syst. Man Cybern. Syst. 47(10), 2641–2652 (2017)CrossRefGoogle Scholar
  38. 38.
    D.E. Rumelhart, G.E. Hinton, R.J. Wilson, Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRefGoogle Scholar
  39. 39.
    F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in Winter Conference On Applications of Computer Vision (1994)Google Scholar
  40. 40.
    E. Sangineto, Pose and expression independent facial landmark localization using dense-SURF and the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 624–638 (2013)CrossRefGoogle Scholar
  41. 41.
    U. Scherhag, R. Raghavendra, K.B. Raja, M. Gomez-Barrero, C. Rathgeb, C. Busch, On the vulnerability of face recognition systems towards morphed face attacks, in 2017 5th International Workshop on Biometrics and Forensics (IWBF) (April 2017), pp. 1–6Google Scholar
  42. 42.
    V. Schetinin, L. Jakaite, Extraction of features from sleep EEG for Bayesian assessment of brain development. PLOS One 12(3), 1–13 (2017)CrossRefGoogle Scholar
  43. 43.
    V. Schetinin, L. Jakaite, W.J. Krzanowski, Prediction of survival probabilities with Bayesian decision trees. Expert Syst. Appl. 40(14), 5466–5476 (2013)CrossRefGoogle Scholar
  44. 44.
    V. Schetinin, L. Jakaite, N. Nyah, D. Novakovic, W. Krzanowski, Feature extraction with GMDH-Type neural networks for EEG-based person identification. Int. J. Neural Syst. 2018, 1750064 (2017)Google Scholar
  45. 45.
    V. Schetinin, L. Jakaite, N. Nyah, D. Novakovic, W. Krzanowski, Feature extraction with GMDH-type neural networks for EEG-based person identification. Int. J. Neural Syst. 28, 1750064 (2018)CrossRefGoogle Scholar
  46. 46.
    C. Shu, X. Ding, C. Fang, Histogram of the oriented gradient for face recognition. Tsinghua Sci. Technol. 16(2), 216–224 (2011)CrossRefGoogle Scholar
  47. 47.
    L. Spacek, Face Recognition Data (June 2008), Online. Accessed 13 Dec 2018Google Scholar
  48. 48.
    H.H. Su, T.W. Chen, C.C. Kao, W.H. Hsu, S.Y. Chien, Preference-aware view recommendation system for scenic photos based on bag-of-aesthetics-preserving features. IEEE Trans. Multimedia 14(3), 833–843 (2012)CrossRefGoogle Scholar
  49. 49.
    Support vector machine template - MATLAB templateSVM (Dec 2018). Accessed 13 Dec 2018Google Scholar
  50. 50.
    H. Tan, B. Yang, Z. Ma, Face recognition based on the fusion of global and local HOG features of face images. IET Comput. Vis. 8(3), 224–234 (2014)CrossRefGoogle Scholar
  51. 51.
    J. Uglov, L. Jakaite, V. Schetinin, C. Maple, Comparing robustness of pairwise and multiclass neural-network systems for face recognition. EURASIP J. Adv. Signal Process. 2008, Article ID 468693, 7 pp. (2008). https://doi.org/10.1155/2008/468693
  52. 52.
    Z. Wu, Q. Ke, J. Sun, H.Y. Shum, Scalable face image retrieval with identity-based quantization and multireference reranking. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1991–2001 (2011)CrossRefGoogle Scholar
  53. 53.
    Z. Xiang, H. Tan, W. Ye, The excellent properties of a dense grid-based HOG feature on face recognition compared to Gabor and LBP. IEEE Access 6, 29,306–29,319 (2018)CrossRefGoogle Scholar
  54. 54.
    Z. Xie, P. Jiang, S. Zhang, Fusion of LBP and hog using multiple kernel learning for infrared face recognition, in 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) (May 2017), pp. 81–84Google Scholar
  55. 55.
    C. Xu, Y. Wang, T. Tan, L. Quan, Automatic 3d face recognition combining global geometric features with local shape variation information, in Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings (May 2004), pp. 308–313Google Scholar
  56. 56.
    G. Zhang, Y. Wang, Robust 3d face recognition based on resolution invariant features. Pattern Recogn. Lett. 32(7), 1009–1019 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Natalya Selitskaya
    • 1
  • S. Sielicki
    • 1
  • L. Jakaite
    • 1
  • V. Schetinin
    • 1
  • F. Evans
    • 1
  • M. Conrad
    • 1
  • P. Sant
    • 1
  1. 1.University of BedfordshireSchool of Computer Science and TechnologyLutonUK

Personalised recommendations